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MAPS ON SUBMETRIZABLE SPACES

FUCAI LIN AND SHOU LIN

(Communicated by Yasunao Hattori)

Abstract. A space X is called a submetrizable space if it can be mapped onto
a metric space by a one-to-one map. In this paper, the internal characteriza-
tions on certain compact or K-images of submetrizable spaces are discussed. We
obtain some characterizations of compact-covering compact images, compact-
covering and sequence-covering compact images, sequence-covering K-images,
perfect images and pseudo-sequence-covering compact images of submetrizable
spaces, and establish some relations between these. Moreover, we discuss the
sequence-covering compact maps or closed sequence-covering maps on submetriz-
able spaces of countable type. Some questions about maps on submetrizable
spaces are posed.

1. Introduction

A study of images of topological spaces under certain maps is an important

question in general topology. In particular, A.V. Arhangel’skii published the

famous paper “Mappings and spaces”[1] in 1966, and then a number of topol-

ogists devote to the study of certain images on metrizable spaces. In recent

years, some noticeable results have been obtained by using sequence-covering maps

to systematically study metrizable spaces and generalized metrizable spaces, see

[4, 5, 6, 7, 8, 9, 11, 12, 14, 19, 20]. In [19], P.F. Yan and C. Lu obtained the internal

characterizations on sequence-covering compact images and sequentially quotient

compact images of submetirzable spaces, where a space X is submetrizable if it has

a coarser metric topology. In this paper, the internal characterizations on certain

compact or K-images of submetrizable spaces are discussed. We mainly discuss

compact-covering compact maps, compact-covering and sequence-covering com-

pact maps, sequence-covering K-maps, perfect maps and pseudo-sequence-covering
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compact maps on submetrizable spaces, and obtain their internal characterizations,

respectively. Moreover, we discuss the sequence-covering compact maps or closed

sequence-covering maps on submetrizable spaces of countable type.

Definition 1.1. Let X be a space, and P ⊂ X.

(1) P is a sequential neighborhood of x in X if every sequence converging to x

is eventually in P ;

(2) P is a k-closed subset of X if for any compact subset K of X, P ∩ K is

closed in X.

Definition 1.2. Let P be a cover of a space X.

(1) P is called a cs-cover [10] for X, if for any convergent sequence S in X,

there exists a P ∈ P such that S is eventually in P ;

(2) P is called a cs∗-cover [10] for X, if for any convergent sequence S in X,

there exists a P ∈ P such that some subsequence of S is eventually in P ;

(3) P is called an sn-cover [10] for X, if every element of P is a sequential

neighborhood of some point of X and for every x ∈ X, there exists a

P ∈ P such that P is the sequential neighborhood of x;

(4) P is called a k-cover [15] for X, if for every compact subset K of X, there

exists a finite subfamily P ′ ⊂ P such that K ⊂ ∪P ′;

(5) Let K be a compact subset of X. F is called a cfp-cover of K [10], if F is

a cover of K in X such that it can be precisely refined by some finite cover

of K consisting of compact subsets of K;

(6) P is called a cfp-cover [20] for X, if for every compact subset K of X, there

exists a finite subfamily F of P such that F is a cfp-cover of K.

Definition 1.3 ([10]). Let f : X → Y be a map.

(1) f is a compact map if each f−1(y) is compact in X;

(2) f is a boundary-compact map if each ∂f−1(y) is compact in X;

(3) f is a K-map if f−1(K) is compact in X for each compact subset K in Y ;

(4) f is a compact-covering map if, for each compact subset K in Y , there exists

a compact subset L in X such that f(L) = K;

(5) f is a sequence-covering map if whenever {yn} is a convergent sequence in

Y there is a convergent sequence {xn} in X with each xn ∈ f−1(yn);

(6) f is a 1-sequence-covering map if for each y ∈ Y there is a point x ∈ f−1(y)

such that whenever {yn} is a sequence converging to y in Y there is a

sequence {xn} converging to x in X with each xn ∈ f−1(yn);

(7) f is a sequentially quotient map if whenever {yn} is a convergent sequence

in Y there is a convergent sequence {xk} in X with each xk ∈ f−1(ynk
);

(8) f is a pseudo-sequence-covering map if for each convergent sequence L in Y

there is a compact subset K in X such that f(K) = L;
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It is obvious that

1-sequence-covering maps - sequence-covering maps
©©©*

pseudo-sequence-covering maps

HHHj
sequentially quotient maps.

Throughout this paper all spaces are assumed to be T1 and regular, all maps are

continuous and onto. The letter N will denote the set of positive integers. Readers

may refer to [2, 3, 10] for unstated definitions and terminology.

2. Compact maps on submetrizable spaces

Lemma 2.1 ([19]). Let X be a submetrizable space. Then there is a sequence

{Pi}i∈N of locally finite open covers of X such that
∩

i∈N st(K,Pi) = K for each

compact subset K ⊂ X.

Remark 1. By the regularity, we can assume that
∩

i∈N st(K,Pi) = K for each

compact subset K ⊂ X in Lemma 2.1. In this paper, we always assume this when

using Lemma 2.1.

Theorem 2.2. Y is a compact-covering compact image of a submetrizable space if

and only if Y has a sequence {Fi}i of point-finite cfp-covers such that
∩

i∈N st(y,Fi)

= {y} for each y ∈ Y .

Proof. Necessity. Let f : X → Y be a compact-covering compact map, where

X is a submetrizable space. Since X is a submetrizable space, it follows from

Lemma 2.1 that there is a sequence {Pi}i∈N of locally finite open covers of X such

that
∩

i∈N st(K,Pi) = K for every compact subset K of X. For every i ∈ N, let

Fi = f(Pi). Since f is a compact map, Fi is point-finite cover for Y . Next, we

prove that Fi is a cfp-cover for each i ∈ N. For each compact subset K of Y ,

since f is a compact-covering map, there exists a compact subset L of X such

that f(L) = K. For each i ∈ N, since Pi is an open cover for X, there exists

a finite subfamily P ′
i ⊂ Pi such that L ⊂ ∪P ′

i. Clearly, P ′
i is a cfp-cover of L.

Therefore, it is obvious that f(P ′
i) is a cfp-cover of K. Moreover, it is easy to see

that
∩

i∈N st(y,Fi) = {y} for each y ∈ Y .

Sufficiency. For each i ∈ N, let Fi = {Fα : α ∈ Λi}, and endow Λi with the

discrete topology. Put

M = {{αi} ∈
∏
i∈N

Λi : There is a point y ∈ Y such that
∩
i∈N

Fαi
= {y}},

and let

X = {(y, {αi}) ∈ Y × M : y ∈
∩
i∈N

Fαi
}.
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Obviously, M is a metrizable space. Let f and p be the restrictions to X of the

projections of Y × M onto Y and M . For any {αi} ∈ M , there exists only one

point y ∈ Y such that p−1({αi}) = (y, {αi}). Therefore, p is a one-to-one map, and

hence X is a submetrizable space. Clearly, f is compact by the point-finiteness of

Fi for each i ∈ N.

Next we show that f is a compact-covering map.

Let K be a compact subset of Y . For each i ∈ N, since Fi is a point-finite

cfp-cover, there exists a finite subfamily Pi ⊂ Fi such that Pi is a cfp-cover of

K. For each i ∈ N, let Pi = {Pα : α ∈ Γi}, and let {Kα : α ∈ Γi} be a family of

compact subsets and precisely refine Pi. Put

L = {(y, {αi}) ∈ K ×
∏
i∈N

Γi : y ∈
∩
i∈N

Kαi
}.

Claim 1: L is compact.

Let (y, {αi}) ∈ (K ×
∏

i∈N Γi) \ L. Then
∩

i∈N Kαi
= ∅ or y ̸∈

∩
i∈N Kαi

.

Case 1:
∩

i∈N Kαi
= ∅.

Then there is an i0 ∈ N such that
∩

i≤i0
Kαi

= ∅. Put

W = {(k × {βi}) ∈ K ×
∏
i∈N

Γi : k ∈ K and βi = αi whenever i ≤ i0}.

Then W is an open subset with (y, {αi}) ∈ W and W ∩ L = ∅. Hence L is closed

subset of K ×
∏

i∈N Γi, and therefore, L is compact.

Case 2: y ̸∈
∩

i∈N Kαi
.

Then there is an i0 ∈ N such that y ̸∈ Kαi0
. Put

W = {k × {βi} ∈ K ×
∏
i∈N

Γi : k ∈ K \ Kαi0
and βi0 = αi0}.

Then W is an open subset with (y, {αi}) ∈ W and W ∩L = ∅. Hence L is a closed

subset of K ×
∏

i∈N Γi, and therefore, L is compact.

Claim 2: L ⊂ X and f(L) = K.

For every (y, {αi}) ∈ L, since
∩

i∈N st(y,Fi) = {y},
∩

i∈N Fαi
= {y}. Hence

L ⊂ X and f(L) ⊂ K. For each y ∈ K and i ∈ N, we can choose αi ∈ Γi such that

y ∈ Kαi
. Let α = {αi}. Then (y, α) ∈ L and f(y, α) = y. Hence K ⊂ f(L).

Therefore, f is a compact-covering map by Claims 1 and 2. ¤

Theorem 2.3. For a space Y , the following conditions are equivalent:

(1) Y is a compact-covering, 1-sequence-covering and compact image of a sub-

metrizable space;

(2) Y is a compact-covering, sequence-covering and compact image of a sub-

metrizable space;

(3) Y has a sequence {Fi}i of point-finite sn-covers such that
∩

i∈N st(y,Fi) =

{y} for each y ∈ Y , and every compact subset of Y is metrizable;
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(4) Y has a sequence {Fi}i of point-finite cs-covers such that
∩

i∈N st(y,Fi) =

{y} for each y ∈ Y , and every compact subset of Y is metrizable.

Proof. Obviously, (1) ⇒ (2) and (3) ⇒ (4).

(2) ⇒ (3). It follows from [19, Theorem 2] that we only need to prove that

every compact subset of Y is metrizable. Let f : X → Y be a compact-covering,

sequence-covering and compact map, where X is submetrizable. For each compact

subset K of Y , there exists a compact subset L of X such that f(L) = K. It

is easy to see that f |L : L → K is a compact-covering, compact and continuous

map. Since X is submetrizable and L is compact, L is metrizable by [3, Theorems

2.5 and 2.13]. Therefore, K is the compact-covering compact image of a compact

metrizable space, and hence K is metrizable since K is a compact space with a

countable-network.

(4) ⇒ (1). It is sufficient to show that, for each i ∈ N, Fi is a cfp-cover by

Theorem 2.2 and [19, Theorem 2]. Let K be a compact subset of Y . Then K is

metrizable, and hence K is first-countable. Fix a point y ∈ K, let {Vn}n∈N be a

decreasing local base at the point y. For every i ∈ N, put

Pi = {P ∩ K : There exists an n ∈ N such that Vn ⊂ P ∩ K,P ∈ Fi}.

Clearly, Pi is finite and every member of Pi is a neighborhood of y in K.

Claim: Pi ̸= ∅.
Suppose not, let Pi = ∅. Denote (Fi)y = {Fj : 1 ≤ j ≤ j0}. For each 1 ≤ j ≤

j0, n ∈ N, we can choose a point xn,j ∈ Vn \ Fj. Then denote yk = xn,j, where

k = (n − 1)j0 + j, 1 ≤ j ≤ j0, n ∈ N. Hence yk → y as k → ∞. However, for each

i ∈ N, Fi is a cs-cover, which is a contradiction.

By the Claim, it is easy to see that Fi is a cfp-cover for each i ∈ N. ¤

Remark 2. (1) We can not omit the condition “Every compact subset of Y is

metrizable” in Theorem 2.3. In fact, let Y be the Stone-Čech compactificatioon

βN of N. Then Y is obviously the image of the discrete space of cardinality of βN
under the identity map, which is a sequence-covering compact map. However, Y

is a non-metrizable compact space, and hence f is not a compact-covering map by

Theorem 2.3.

(2) From the proof of (4) ⇒ (1) in Theorem 2.3, it is easy to see that we can

replace the condition “Every compact subset of Y is metrizable” in Theorem 2.3

by “Every compact subset of Y is a first-countable subspace”.

The following lemma is an easy exercise.

Lemma 2.4. Let P be a point-finite cs∗-cover for a space X. Then, for each

x ∈ X, st(x,P) is a sequential neighborhood at the point x.

Theorem 2.5. For a space Y , the following conditions are equivalent:

(1) Y is a sequentially-quotient compact image of a submetrizable space;
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(2) Y is a pseudo-sequence-covering compact image of a submetrizable space;

(3) Y has a sequence {Fi}i of point-finite cs∗-covers such that
∩

i∈N st(y,Fi) =

{y} for each y ∈ Y .

Proof. Obviously, (2) ⇒ (1). (1) ⇒ (3) by [19, Theorem 3]. So we only need to

show (3) ⇒ (2).

For each i ∈ N, let Fi = {Fα : α ∈ Λi}, and endow Λi with the discrete topology.

Put

M = {{αi} ∈
∏
i∈N

Λi : There is a point y ∈ Y such that
∩
i∈N

Fαi
= {y}},

and let

X = {(y, {αi}) ∈ Y × M : y ∈
∩
i∈N

Fαi
}.

Obviously, M is a metrizable space. Let f and p be the restrictions to X of the

projections of Y ×M onto Y and M . It is easy to see that X is submetrizable and

f is compact by the proof of Theorem 2.2.

Next we prove that f is a pseudo-sequence-covering map.

For each y ∈ Y and sequence {yn} converging to y, put K = {y} ∪ {yn : n ∈
N}. For each i ∈ N, it follows from Lemma 2.4 that st(y,Fi) is a sequential

neighborhood at the point y. Therefore, there is a finite subfamily F ′
i ⊂ (Fi)K

such that K ⊂ ∪F ′
i and (Fi)y ⊂ F ′

i . Then there exists a finite subset Γi ⊂ Λi such

that F ′
i = {Fα : α ∈ Γi}. For each α ∈ Γi, we take

Kα =

{
K ∩ Fα, if y ∈ Fα,

(K \ st(y,Fi)) ∩ Fα, if y ̸∈ Fα.

Then {Kα : α ∈ Γi} is a family of compact subsets and K =
∪

α∈Γi
Kα. Hence F ′

i

is a cfp-cover of K. Put

L = {(y, {αi}) ∈ K ×
∏
i∈N

Γi : y ∈
∩
i∈N

Kαi
}.

From the proof of Theorem 2.2, L is compact and f(L) = K. ¤

3. K-maps on submetrizable spaces

Theorem 3.1. For a space Y , the following conditions are equivalent:

(1) Y is a 1-sequence-covering K-image of a submetrizable space;

(2) Y is a sequence-covering K-image of a submetrizable space;

(3) Y has a sequence {Fi}i of compact-finite sn-covers of k-closed subsets such

that
∩

i∈N st(K,Fi) = K for each compact subset K ⊂ Y ;

(4) Y has a sequence {Fi}i of compact-finite cs-covers of k-closed subsets such

that
∩

i∈N st(K,Fi) = K for each compact subset K ⊂ Y .
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Proof. (1)⇒(2) and (3)⇒(4) are obvious. The proof of (4)⇒(3) is similar to the

proof of (4)⇒(3) in [19, Theorem 2].

(2)⇒(4) Let f : X → Y be a sequence-covering K-map, where X is a sub-

metrizable space. Since X is a submetrizable space, it follows from Lemma 2.1

that there is a sequence {Pi}i∈N of locally finite open covers of X such that∩
i∈N st(K,Pi) = K. For every i ∈ N, let Fi = f(Pi). Since f is a K-map

and Pi is locally finite for each i ∈ N, it is easy to see that Fi is compact-finite

cover for Y . Obviously, Fi is a cs-cover for each i ∈ N. Moreover, it is easy to see

that
∩

i∈N st(K,Fi) = K for each compact subset K ⊂ Y .

Claim 1: Each member of Fi is a k-closed subset of Y .

Fix i ∈ N. For each Fα ∈ Fi, there is a Pα ∈ Pi such that f(Pα) = Fα. For each

compact subset K ⊂ Y , we have Fα ∩ K = f(Pα) ∩ K = f(Pα ∩ f−1(K)). Since f

is a K-map, Pα ∩ f−1(K) is compact in X. Therefore, Fα ∩ K is closed in Y .

(3)⇒(1) By the same notations as in Theorem 2.2. f is a 1-sequence-covering

map by the proof of [19, Theorem 2]. Now we show that f is a K-map.

For each compact L ⊂ Y , let Λ′
i = {α ∈ Λi : Fα ∈ Fi, Fα ∩ L ̸= ∅} for every

i ∈ N. Since Fi is compact finite, Λ′
i is finite. Therefore,

∏
i∈N Λ′

i is a compact

subset of
∏

i∈N Λi.

Claim 2: f−1(L) = (L × ((
∏

i∈N Λ′
i) ∩ M)) ∩ X.

It is easy to see, so we omit it.

Claim 3: f−1(L) is a closed subset of L ×
∏

i∈N Λ′
i.

For each (y, {αi}) ∈ (L ×
∏

i∈N Λ′
i) \ f−1(L), we have

∩
i∈N Fαi

= ∅ or y ̸∈∩
i∈N Fαi

̸= ∅ by Claim 2.

Case 1:
∩

i∈N Fαi
= ∅.

Then
∩

i∈N(Fαi
∩ L) = ∅, and since Fi is a k-closed cover of Y , there exists an

m ∈ N such that
∩i=m

i=1 (Fαi
∩ L). Put

U = {(y′, {βi}) ∈ L ×
∏
i∈N

Λ′
i : βi = αi whenever i = 1, · · · ,m, y′ ∈ L}.

Then U is open in L×
∏

i∈N Λ′
i with (y, {αi}) ∈ U and U ∩ f−1(L) = ∅. Therefore,

f−1(L) is a closed subset of L ×
∏

i∈N Λ′
i.

Case 2: y ̸∈
∩

i∈N Fαi
̸= ∅.

There exists an i0 ∈ N such that y ̸∈ Fαi0
. Since Fαi0

is a k-closed subset, Fαi0
∩L

is closed in L. Put

U = {(y′, {βi}) ∈ L ×
∏
i∈N

Λ′
i : βi0 = αi0 and y′ ∈ L \ (L ∩ Fαi0

)}.

Then U is open in L×
∏

i∈N Λ′
i with (y, {αi}) ∈ U and U ∩ f−1(L) = ∅. Therefore,

f−1(L) is a closed subset of L ×
∏

i∈N Λ′
i.

It follows from Claim 3 that f−1(L) is compact in L×
∏

i∈N Λ′
i. Hence f−1(L) is

compact in X. ¤
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Remark 3. By Remark 2, βN is the image of submetrizable space under a

sequence-covering compact map. Since compact submetrizable spaces are metriz-

able, it is easy to see that βN is not the image of submetrizable space under a

K-map.

Theorem 3.2. Y is the K-image of a submetrizable space if and only if Y has a se-

quence {Fi}i of compact-finite cfp-covers of k-closed subsets such that
∩

i∈N st(K,Fi)

= K for each compact subset K ⊂ Y .

Proof. It is easy to see that a K-map is a compact-covering compact map. The

proof is similar to the proof of Theorem 3.1 and the necessity in Theorem 2.2, so

we omit it. ¤

Theorem 3.3. Let Y be a k-space. Then the following conditions are equivalent:

(1) Y is the perfect image of a submetrizable space;

(2) Y has a sequence {Fi}i of locally finite k-covers of k-closed subsets such

that
∩

i∈N st(K,Fi) = K for each compact subset K ⊂ Y ;

(3) Y has a sequence {Fi}i of locally finite closed covers such that
∩

i∈N st(K,Fi)

= K for each compact subset K ⊂ Y ;

Proof. Obviously, (2)⇔(3) by the facts: Every locally finite cover is obviously a

k-cover, and every k-closed cover is a closed cover among k-spaces.

(1)⇒(2). Let f : X → Y be a perfect map, where X is a submetrizable space.

It follows from Lemma 2.1 that there is a sequence {Pi}i∈N of locally finite open

covers of X such that
∩

i∈N st(K,Pi) = K. For every i ∈ N, let Fi = f(Pi).

Since f is a closed map and Pi is locally finite for each i ∈ N, Fi is hereditarily

closure-preserving cover for Y . It is well known that a perfect map is a K-map,

and hence f is a K-map. Thus Fi is compact-finite cover for Y . Therefore, Fi is

locally finite for each i ∈ N. Obviously, Fi is a k-cover for each i ∈ N, since f is

a K-map. Moreover, it is easy to see that
∩

i∈N st(K,Fi) = K for each compact

subset K ⊂ Y and, for every i ∈ N, each member of Fi is a k-closed subset of Y

by the proof of Theorem 3.1.

(2)⇒(1). By the same notations as in Theorem 2.2. Obviously, f is a K-map by

the proof of Theorem 3.1. Now we show that f is a closed map. In fact, K-map f

onto the k-space Y is obviously a closed map since f(f−1(K)∩F ) = K ∩ f(F ) for

each compact subset K of Y . ¤

4. Submetrizable spaces of countable type

S. Lin and P.F. Yan in [11] proved that each sequence-covering and compact

map on metric spaces is a 1-sequence-covering map. Recently, F. C. Lin and S.

Lin proved that each sequence-covering and boundary-compact map on the spaces,

which are the images of metric spaces under open compact-covering maps, is a

1-sequence-covering map[8]. Hence we have the following question.
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Question 4.1. Are the sequence-covering and compact(or boundary-compact) maps

on a submetrizable space 1-sequence-covering?

Now we give some partial answer for this Question 4.1. Firstly, we give some

lemmas.

Recall that a space X is of countable type if each compact subset of X is contained

in some compact subset of countable character in X. Clearly, every locally compact

space is of countable type.

In [14, Theorem 1.2], E.A. Michael and K. Nagami proved the following theorem.

Theorem 4.2. A space Y is a compact-covering open image of a metric space if

and only if every compact subset of Y is metrizable and of countable character in

Y .

The following lemma is an easy exercise.

Lemma 4.3. Let X be a space, and A ⊂ B ⊂ X with A,B compact. If A has

countable character in B and so does B in X, then so does A in X.

Now, it follows from Lemma 4.3 that we can rewrite Theorem 4.2 as follows.

Theorem 4.4. A space Y is a compact-covering open image of a metric space if

and only if Y is of countable type and every compact subset of Y is metrizable.

Lemma 4.5. Let X be a submetrizable space of countable type. Then X is the

open compact-covering images of metric spaces.

Proof. Since X is submetrizable and of countable type, it is easy to see that every

compact subset of X is metrizable by [3, Theorems 2.5 and 2.13] and of countable

character, and hence X is the images of metric spaces under open compact-covering

maps by Theorem 4.4. ¤

Theorem 4.6. Sequence-covering and boundary-compact maps on a submetrizable

space of countable type is 1-sequence-covering.

Proof. Let f : X → Y be a sequence-covering and boundary-compact map, where

X is a submetrizable space of countable type. By Lemma 4.5, X is the open

compact-covering images of metric spaces. Therefore, f is a 1-sequence-covering

map by [8, Theorem 3.6]. ¤

Remark. There exists a non-metrizable and locally compact submetrizable space,

see [3, Example 2.17].

Question 4.7. Are the sequentially-quotient and compact(or boundary-compact)

maps on a submetrizable space pseudo-sequence-covering?

Now we give some partial answer for this Question 4.7.
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Theorem 4.8. Sequentially-quotient and boundary-compact maps on a submetriz-

able space of countable type is pseudo-sequence-covering.

Proof. Let f : X → Y be a sequentially-quotient and boundary-compact map,

where X is a submetrizable space of countable type. By Lemma 4.5, X is the open

compact-covering images of metric spaces. Therefore, f is a pseudo-sequence-

covering map by [8, Theorem 3.11]. ¤

Corollary 4.9. Quotient and boundary-compact maps on a submetrizable space of

countable type is pseudo-sequence-covering.

In [8], F.C. Lin and S. Lin posed the following Question 4.10.

Question 4.10 ([8]). Let f : X → Y be a closed sequence-covering map. If X

is the image of a metric space under open compact-covering maps, then is f a

1-sequence-covering map?

In [8], F.C. Lin and S. Lin have proved that, in Question 4.10, f is a 1-sequence-

covering map whenever X is a space with a point-countable base or a Tychonoff

strongly monotonically monolithic (see [16]) space. So we have the following Ques-

tion 4.11.

Question 4.11. Are the closed sequence-covering maps on a submetrizable space

(of countable type) 1-sequence-covering?

However, we have the following Theorem 4.13, which give a partial answer for

Question 4.11. Firstly, we give a technique lemma.

Lemma 4.12. Let f : X → Y be a closed sequence-covering map, where X is

a first-countable space. If every closed separable subset of X is normal, then Y

contains no closed copy of Sω.

Proof. Suppose that Y contains a closed copy of Sω, and that {y}∪{yi(n) : i, n ∈ N}
is a closed copy of Sω in Y , here yi(n) → y as i → ∞. For every k ∈ N, put

Lk = {yi(n) : i ∈ N, n ≤ k}. Hence Lk is a sequence converging to y. Let Mk

be a sequence of X converging to uk ∈ f−1(y) such that f(Mk) = Lk. We rewrite

Mk = ∪{xi(n, k) : i ∈ N, n ≤ k} with each f(xi(n, k)) = yi(n).

Case 1: {uk : k ∈ N} is finite.

There are a k0 ∈ N and an infinite subset N1 ⊂ N such that Mk → uk0 for every

k ∈ N1, then X contains a closed copy of Sω. Hence X is not first countable. This

is a contradiction.

Case 2: {uk : k ∈ N} has a non-trivial convergent sequence in X.

Without loss of generality, we suppose that uk → u as k → ∞. Since X is

first-countable, let {Um} be a decreasingly and open neighborhood base of X at

point u with Um+1 ⊂ Um. Then
∩

m∈N Um = {u}. Fix n, pick xim(n, km) ∈
Um ∩ {xi(n, km)}i. We can suppose that im < im+1. Then {f(xim(n, km))}m is a
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subsequence of {yi(n)}. Since f is closed, {xim(n, km)}m is not discrete in X. Then

there is a subsequence of {xim(n, km)}m converging to a point b ∈ X because X is

a first-countable space. It is easy to see that b = u by xim(n, km) ∈ Um for every

m ∈ N. Hence xim(n, km) → u as m → ∞. Then {u} ∪ {xim(n, km) : n,m ∈ N} is

a closed copy of Sω in X. Thus, X is not first countable. This is a contradiction.

Case 3: {uk : k ∈ N} is discrete in X.

Let B = {uk : k ∈ N}∪ {Mk : k ∈ N}. Since every closed separable subsets of X

is normal, B is is normal. Hence there exists a discrete family {Vk}k∈N consisting

of open subsets of B with uk ∈ Vk for each k ∈ N. Pick xik(1, k) ∈ Vk ∩ {xi(1, k)}i

such that {f(xik(1, k))}k is a subsequence of {yi(n)}. Since {xik(1, k)}k is discrete

in B, {f(xik(1, k))}k is discrete in Y . This is a contradiction.

In a word, Y contains no closed copy of Sω. ¤

Theorem 4.13. Let f : X → Y be a closed sequence-covering map, where X is

a submetrizable space of countable type. If every closed separable subset of X is

normal, then f is 1-sequence-covering.

Proof. Obvious, X is first-countable by Lemma 4.3. It follows from Lemma 4.12

that Y contains no closed copy of Sω. Since X is first-countable and every closed

separable subsets of X is normal, ∂f−1(y) is countably compact for each y ∈ Y by

[13, Theorem 2.6]. Then f is a boundary-compact map, since a countably compact

submetrizable space is metrizable. Therefore, f is a 1-sequence-covering map by

Theorem 4.6. ¤

Corollary 4.14. Closed sequence-covering maps on a normal submetrizable space

of countable type is 1-sequence-covering.

Remark 4. (1) Under the set-theoretic hypotheses(Martin’s plus ♦ε(E)), there

exists a non-metrizable, normal, locally compact submetrizable space, see [17];

(2) There exists a nonnormal, separable, locally compact submetrizable space,

see [18].

5. Open problems

Here, we list some open problems about submetrizable spaces.

Question 5.1. Characterizations for submetrizable spaces by nice image of metric

spaces.

Question 5.2. What kinds of internal characterizations of the perfect images of

submetrizable spaces?

Question 5.3. Are the sequence-covering and compact(or boundary-compact) maps

on a submetrizable space 1-sequence-covering?
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Question 5.4. Are the closed sequence-covering maps on a submetrizable space

1-sequence-covering?

Question 5.5. What kinds of internal characterizations of the sequence-covering

compact(or compact-covering compact, or sequentially quotient compact) images of

submetrizable spaces of countable type?
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