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OPEN UNIFORM (G) AT NON-ISOLATED POINTS AND MAPS

FUCAI LIN AND SHOU LIN

(Communicated by Yasunao Hattori)

Abstract. In this paper, we mainly introduce the notion of an open uniform
(G) at non-isolated points, and show that a space X has an open uniform (G)
at non-isolated points if and only if X is the open boundary-compact image of
metric spaces. Moreover, we also discuss the inverse image of spaces with an
open uniform (G) at non-isolated points. Two questions about open uniform
(G) at non-isolated points are posed.

1. Introduction

In [3], F.C. Lin and S. Lin defined the notion of uniform bases at non-isolated

points, and obtained that a space X has an uniform base at non-isolated points if

and only if X is the open and boundary-compact image of metric spaces. Isbell-

Mrówka space ψ(D) [8] has an uniform base at non-isolated points, and however, it

has not any uniform base. It is well known that a space has an uniform base if and

only if it has an open uniform (G) if and only if it is the open compact image of

metric spaces. Therefore, we generalize the notion of open uniform (G), and define

the notion of the open uniform (G) at non-isolated points such that a space has

an open uniform (G) at non-isolated points if and only if it has an uniform base at

non-isolated points. In [4], F.C. Lin and S. Lin have discussed the image of spaces

with an uniform base at non-isolated points. In this paper, we also also discuss the

inverse image of spaces with an uniform base at non-isolated points.

By R, N, denote the set of all real numbers and positive integers, respectively.

For a topological space X, let τ(X) denote the topology for X, and let

I(X) = {x : x is an isolated point of X},

Xd = X − I(X),

I(X) = {{x} : x ∈ I(X)}.
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In this paper all spaces are Hausdorff, all maps are continuous and onto. Recall

some basic definitions.

Definition 1.1. Let P be a base of a space X. P is an uniform base [1] (resp.

uniform base at non-isolated points [3]) for X if for each (resp. non-isolated) point

x ∈ X and any countably infinite subset P ′ of {P ∈ P : x ∈ P}, P ′ is a neighbor-

hood base at x in X.

Definition 1.2. A space X has an open uniform (G)[6] (resp. open uniform (G)

at non-isolated points), if there exists a collection W = {Wx : x ∈ X} of open

subsets of X satisfying the following conditions:

(1) For each x ∈ X, x ∈ ∩Wx and |Wx| ≤ ℵ0;

(2) For each x ∈ U ∈ τ(X), there exists an open neighborhood V (x, U) of

x such that there is a W ∈ Wy with x ∈ W ⊂ U for each y ∈ V (x, U)

(y ∈ V (x, U) ∩ Xd);

(3) For each x ∈ X, W ′
x is a network at point x for any infinite subfamily

W ′
x ⊂ Wx.

In the Definitions 1.1 and 1.2, “at non-isolated points” means “at each non-

isolated point of X”. If W = {Wx : x ∈ X} is an open uniform (G) at non-isolated

points, then (W \ {Wx : x ∈ I}) ∪ {W ′
x = {x} : x ∈ I} is also an open uniform

(G) at non-isolated points for X. Therefore, we always suppose that Wx = {x} if

x ∈ I in this paper. It is obvious that spaces with an open uniform (G) have an

open uniform (G) at non-isolated points.

Definition 1.3. Let f : X → Y be a map.

(1) f is a compact map if each f−1(y) is compact in X;

(2) f is a boundary-compact map, if each ∂f−1(y) is compact in X;

(3) f is a perfect map if it is a closed and compact map.

(4) f is called a ≤ k-to-one (resp. k-to-one, finite-to-one) map if |f−1(y)| ≤ k

(resp. |f−1(y)| = k, f−1(y) is finite) for every y ∈ Y , where k ∈ N;

(5) f is called a local homeomorphism if, for each x ∈ X, there exists an open

neighborhood U of x in X such that f |U : U → f(U) is a homeomorphism

map and f(U) is open in Y .

(6) f is an irreducible map if there does not exist a proper closed subset X ′ of

X such that f(X ′) = Y .

Definition 1.4 ([3]). Let X be a space and {Pn}n a sequence of collections of

open subsets of X. {Pn}n is called a development at non-isolated points for X if

{st(x,Pn)}n is a neighborhood base at x in X for each non-isolated point x ∈ X. X

is called developable at non-isolated points if X has a development at non-isolated

points.
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Definition 1.5 ([3]). Let P be a family of subsets of a space X. P is called point-

finite at non-isolated points(resp. point-countable at non-isolated points) if for each

non-isolated point x ∈ X, x belongs to at most finitely (countably) many elements

of P . Let {Pn}n be a development at non-isolated points for X. {Pn}n is said to

be a point-finite development at non-isolated points for X if each Pn is point-finite

at each non-isolated point of X.

Definition 1.6. Let X be a topological space. g : N × X → τ(X) is called a

g-function, if x ∈ g(n, x) and g(n + 1, x) ⊂ g(n, x) for any x ∈ X and n ∈ N. For

A ⊂ X, put

g(n,A) =
∪
x∈A

g(n, x).

Readers may refer to [2, 5] for unstated definitions and terminology.

2. Open uniform (G) at non-isolated points

In this section, we mainly show that a space has an open uniform (G) at non-

isolated points if and only if it has an uniform base at non-isolated points. Firstly,

we give some technique lemmas.

Lemma 2.1 ([4]). Let X be a topological space. Then the following conditions are

equivalent:

(1) X is an open boundary-compact image of a metric space;

(2) X has an uniform base at non-isolated points;

(3) X has a point-finite development at non-isolated points;

(4) X has a development at non-isolated points, and Xd is a metacompact sub-

space of X.

Lemma 2.2. Let X have an open uniform (G) at non-isolated points. Then there

exists a g-function such that for each x ∈ Xd and any sequence {xn}n with xn ∈
g(n, x) or x ∈ g(n, xn), {xn}n has a subsequence converging to x.

Proof. Let W = {Wx : x ∈ X} be an open uniform (G) at non-isolated points for

X.

Claim 1: There exists a sequences {Hn}n of open coverings of X, where Hn is

point-finite at non-isolated points for each n ∈ N.

For each x ∈ X, let {G(n, x)}n be a decreasing open neighborhood base at x,

where, for each x ∈ N, G(n, x) = {x} if x ∈ I. Next, we define the point-finite

open covering Hn at non-isolated points, hn : Hn → X and open neighborhood

O(n, x) of x for each x ∈ X by induction on n ∈ N. Firstly, let H0 = {X}, and

choose a point z ∈ X and define h0 : H0 → X with h0(X) = z. Put

O(1, x) =

{
G(1, x), x = z,

G(1, x) − {z}, x ̸= z.
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Suppose that we have defined Hm−1, hm−1, and O(m, x) for each m ≤ n and x ∈ X.

We endow Hm−1 with a well-order by (Hm−1, <). For each H ∈ Hn−1, since Xd

is hereditarily metacompact, there exists an open covering Fn(H) of H such that

Fn(H) is point-finite at non-isolated points and refines {H ∩ V (x,O(n, x))}x∈H ,

where V (x,O(n, x)) is the open neighborhood of x stated in (3) of Definition 1.2.

Put

Hn(H) = Fn(H) − ∪{Fn(H ′) : H ′ < H}, H ∈ Hn−1;

Hn = ∪{Hn(H) : H ∈ Hn−1}.
Then Hn is an open covering of X, which is point-finite at non-isolated points. For

each H ∈ Hn, there exists just one H ′ ∈ Hn−1 such that H ∈ Hn(H ′) ⊂ Fn(H ′).

Then we can choose a point xH ∈ H ′ such that H ⊂ H ′ ∩ V (xH , O(n, xH)) ⊂
O(n, xH). Define

hn(H) = xH ;

O(n + 1, x) = G(n + 1, x) − {hm(H) : m ≤ n,H ∈ (Hm)x and x ̸= hm(H)}.
If x ∈ Xd, then x ∈ O(n + 1, x) ∈ τ(X); if x ∈ I, then G(n + 1, x) = O(n + 1, x) =

{x} ∈ τ(X).

Claim 2: For each x ∈ Xd, Xd ∩
∩∞

n=0 st(x,Hn) = {x}.
Suppose not, there exist distinct points x, y ∈ Xd and a sequence {Hn}n of

subsets of X such that x, y ∈ Hn ∈ Hn for each n ∈ N. For each n ∈ N, there exists

just one sequence {Hm
n }m≤n such that Hn

n = Hn, Hm
n ∈ Hm and Hm

n ∈ Hm(Hm−1
n )

for each 1 < m ≤ n. Then x ∈ Hn ⊂ Hm
n ⊂ Hm−1

n . Since Hm is point-finite at

point x, we can define In ⊂ N and in ∈ N by induction on n ∈ N as follows.

(1) in = minIn;

(2) In+1 ⊂ In − {in};
(3) m, k ∈ In ⇒ Hn

m = Hn
k .

Let Kn = Hn
in , qn = hn(Kn). Then Kn = Hn

m for each m ∈ In and qn ∈ Kl ⊃ Kn

for each l < n. Since x ∈ Kn ⊂ V (qn, O(n, qn)), there exists a Wn ∈ Wx such that

qn ∈ Wn ⊂ O(n, qn) by the definition of open uniform (G).

Choose disjoint open sets Ux and Uy such that x ∈ Ux and y ∈ Uy. Without

loss of generality, we can assume that there exists an infinite J ⊂ N such that,

for each n ∈ J , qn ̸∈ Ux. Then Wn * Ux, and therefore, {Wn : n ∈ J} is finite.

Hence, without loss of generality, we can suppose that Wn = Wm for any n,m ∈ J .

Thus qm ∈ O(in, qn), and qm = qn by the definition of O(in, qn). Let qn = q for

each n ∈ J . For each n ∈ J , x ∈ V (q, O(n, q)) ⊂ O(n, q) ⊂ G(n, q), and therefore,

x ∈
∩

n∈J G(n, q) = {q}, which is a contradiction.

Now, we begin to show the Lemma. For each n ∈ N, x ∈ Xd, choose an

H(n, x) ∈ (Hn)x. For each x ∈ X, define g(n, x) by induction on n as follows.

g(n + 1, x) =

{
V (x,H(n + 1, x)) ∩ G(n + 1, x) ∩ g(n, x), x ∈ Xd,

{x}, x ∈ I,
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where

g(1, x) =

{
V (x, H(1, x)) ∩ G(1, x), x ∈ Xd,

{x}, x ∈ I.

Let x ∈ Xd and {xn}n be a sequence with xn ∈ g(n, x) or x ∈ g(n, xn). We consider

the following two cases.

Case 1: {n : xn ∈ g(n, x)} is infinite.

In this case, it is easy to show that the subsequence {xn : xn ∈ g(n, x)} converges

to x.

Case 2: {n : xn ∈ g(n, x)} is finite.

In this case, we may assume that x ∈ g(n, xn) for each n ∈ N. We show that the

sequence {xn}n itself converges to x. Otherwise, there exists an open neighborhood

U of x such that {xn}n is not eventually in U . For each n ∈ N, since x ∈ g(n, xn), we

have xn ∈ Xd and x ∈ V (xn, H(n, xn)). Hence, for each n ∈ N, there is a Wn ∈ Wx

such that xn ∈ Wn ⊂ H(n, xn) ⊂ st(x,Hn). Let M = {n ∈ N : xn ̸∈ U}. Then

M is infinite. Therefore, by the condition (3)in Definition 1.2, {Wn : n ∈ M} is

finite set. Without loss of generality, we can assume that Wn = Wm for n,m ∈ M .

Then, xn ∈ st(x,Hm) for any n,m ∈ M . Hence, xn ∈
∩

m∈M st(x,Hm)∩Xd = {x}
by Claim 2, which is a contradiction. ¤

Lemma 2.3. If X has an open uniform (G) at non-isolated points, then X has a

point-countable base at non-isolated points.

Proof. Let W = {Wx : x ∈ X} be an open uniform (G) at non-isolated points for

X, where Wx = {W (n, x)}n. Let g be a g-function satisfying the conditions in

Lemma 2.2. For each n ∈ N and the open covering {g(n, x) : x ∈ X} of X, since

Xd is metacompact, there exists an open covering Un such that Un is point-finite

at non-isolated points and refines {g(n, x) : x ∈ X}. For each U ∈ Un, there is a

xU ∈ X such that U ⊂ g(n, xU). Let

Bn,m = {U ∩ W (m,xU) : U ∈ Un},m ∈ N;

B =
∪

n,m∈N Bn,m.

Then B is an open collection of subsets of X and point-countable at non-isolated

points of X. We now show that B ∪ I(X) is point-countable base at non-isolated

points for X. Indeed, for each x ∈ Xd and x ∈ O ∈ τ(X), choose an Un ∈ (Un)x for

each n ∈ N. We denote xn = xUn . Then x ∈ g(n, xn), and hence sequence {xn}n

converges to x. Therefore, there exists an i ∈ N such that xi ∈ V (x,O). Since

x ∈ g(i, xi), we have xi ∈ Xd and there is an m ∈ N such that x ∈ W (m,xi). Thus

x ∈ Ui ∩ W (m, xi) ⊂ O. ¤

Put R+ = {x ∈ R : x ≥ 0}.

Lemma 2.4. If X has an open uniform (G) at non-isolated points, then there

exists a function d : X × X → R+ such that, for each x ∈ Xd, x ∈ B(x, 1
n
) and
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{int(B(x, 1
n
))}n is a decreasing neighborhood base at x, where B(x, 1

n
) = {y ∈ X :

d(x, y) < 1
n
}.

Proof. Let g be the g-function constructed in the proof of Lemma 2.2. For any

distinct points x, y ∈ X, put

m(x, y) = min{n ∈ N : y ̸∈ g(n, x) and x ̸∈ g(n, y)}.

Define d : X × X → R+ as follows.

d(x, y) =

{
0, x = y,

1
m(x,y)

, x ̸= y.

Then, for each point x ∈ Xd and n ∈ N, x ∈ int(B(x, 1
n
)). Indeed, since m(x, y) > n

for each y ∈ g(n, x), d(x, y) < 1
n
. Then y ∈ B(x, 1

n
), and therefore, x ∈ g(n, x) ⊂

B(x, 1
n
). It follows that x ∈ int(B(x, 1

n
)). For each x ∈ Xd and x ∈ U , there exists

an m ∈ N such that B(x, 1
m

) ⊂ U . Otherwise, suppose that B(x, 1
m

) * U for each

m ∈ N. Choose a point xm ∈ B(x, 1
m

)\U for each m ∈ N. Then d(x, xm) < 1
m

, and

hence x ∈ g(m, xm) or xm ∈ g(m,x). By Lemma 2.2, {xm}m has a subsequence

converging to x. It contradicts the fact that xm ̸∈ U for each m ∈ N. ¤

Lemma 2.5. If X has an open uniform (G) at non-isolated points, then X is a

developable space at non-isolated points.

Proof. By Lemma 2.3, let U be a point-countable base at non-isolated points for

X. Endow Xd with a well-order by (Xd, <). Let d : X ×X → R+ be the function

defined in the proof of Lemma 2.4. For each x ∈ Xd, let (U)x = {Un(x)}n. For

each n ∈ N, put

Vn(x) = int(B(x, 1
n
));

h(n, x) = Un(x) ∩ Vn(x);

p(n, x) = min{y ∈ Xd : x ∈ h(n, y)};
g(n, x) = Vn(x) ∩ (∩{h(i, p(i, x)) : i ≤ n}) ∩ (∩{Uj(p(i, x)) : i, j ≤ n, x ∈

Uj(p(i, x))});
ϕn = {g(n, x) : x ∈ Xd} ∪ {g(n, x) = {x} : x ∈ I}.

Then {ϕn}n is a development at non-isolated points. Indeed, suppose not, there

exists a point x ∈ Xd and an open neighborhood U of x such that there is xi ∈ Xd

satisfying x ∈ g(i, xi) * U for each i ∈ N. Since x ∈ Vi(xi), xi → x. It follows

from Lemma 2.4 that there exist l,m ∈ N such that B(x, 1
l
) ⊂ Um(x) ⊂ U . For

each y ∈ Xd, if x ∈ h(l, y) ⊂ Vl(y), then y ∈ B(x, 1
l
) ⊂ Um(x). It follows that

p(l, x) ∈ Um(x), and therefore, there exists a k ∈ N such that Um(x) = Uk(p(l, x)).

Since Uk(p(l, x)) ∩ h(l, p(l, x)) is an open neighborhood at x, there is an i0 ∈ N
such that, for each i ≥ i0, xi ∈ Uk(p(l, x)) ∩ h(l, p(l, x)). Thus p(l, xi) ≤ p(l, x)

for i ≥ i0, and on the other hand, x ∈ g(i, xi) ⊂ h(l, p(l, xi)) for i ≥ l. Then

p(l, x) ≤ p(l, xi) for each i ≥ l. Therefore, p(l, xi) = p(l, x) for i ≥ max{i0, l}.
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It follows that xi ∈ Uk(p(l, xi)), and therefore, for i ≥ max{i0, l, k}, g(i, xi) ⊂
Uk(p(l, xi)) = Uk(p(l, x)) = Um(x) ⊂ U , which is a contradiction. ¤

Theorem 2.6. A space X has an open uniform (G) at non-isolated points if and

only if X has an uniform base at non-isolated points.

Proof. Necessity. By Lemma 2.5, X has a development at non-isolated points.

Since Xd is metacompact, X has an uniform base at non-isolated points by Lemma

2.1.

Sufficiency. Let B be an uniform base at non-isolated points for X. If B is point-

countable at non-isolated points for X, then W = {(B)x : x ∈ Xd} ∪ I(X) is an

open uniform (G) at non-isolated points for X. Suppose that there exists a point

x ∈ Xd such that (B)x is uncountable. If z ∈ X − {x}, then {B ∈ (B)x : z ∈ B}
is finite. Hence there are an infinite subset {Bn : n ∈ N} ⊂ (B)x, xn ∈ Bn − {x}
for each n ∈ N, and some k ∈ N such that xn belongs to just k many elements of

(B)x. Then xn → x as n → ∞. Since B is a base for X, there exists an infinite

subfamily {B′
i : i ∈ N} of B and a subsequence {xni

}i such that {xnj
: j ≥ i} ⊂

B′
i ⊂ X − {xnj

: j < i} for i ∈ N. Then xni
belongs to i many elements of (B)x,

which is a contradiction. ¤

3. Inverse image of spaces with uniform bases at non-isolated points

In this section, we mainly discuss the inverse image of spaces with uniform bases

at non-isolated points.

Definition 3.1. Let X be a topological space.

(1) X is called a w△-space at non-isolated points if there exists a sequence

{Un}n of open covers such that, for every x ∈ X−I, whenever xn ∈ st(x,Un),

then {xn}n has a cluster point.

(2) X is said to have a Gδ-diagonal at non-isolated points if there exists a

sequence {Un}n of open covers such that
∩

n∈N st(x,Un) = {x} for every

x ∈ X − I. Moreover, X is said to have a G∗
δ-diagonal at non-isolated

points if we replace “
∩

n∈N st(x,Un) = {x}” by “
∩

n∈N st(x,Un) = {x}”.

It is obvious that

(1) X is developable at non-isolated points ⇒ X is a w△-space at non-isolated

points;

(2) X has a G∗
δ-diagonal at non-isolated points ⇒ X has a Gδ-diagonal at

non-isolated points;

Example 3.2. There exists a perfect map from a space X onto a metric space, where

X has not any uniform base at non-isolated points.

Proof. Let X = [0, 1] × {0, 1} and endow X with the lexicographic ordered space.

Let f : X → [0, 1] be a naturally projective map, where [0, 1] endowed with the
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usual topology. Since X is compact, f is a closed and 2-to-one map. X does not

have an uniform base at non-isolated points since X has no uniform base and does

not contain any isolated points.

From this example it can be seen that a closed and 2-to-one map does not

inversely preserve spaces with an uniform base at non-isolated points. ¤

Example 3.3. There exists an open and ≤2-to-one map from a space X onto a

metric space, where X has not any uniform base at non-isolated points.

Proof. Y. Tanaka in [9, Example 3.7] constructed a regular space X which is the

inverse image of a compact metric space under an open and ≤2-to-one map, but X

is not a first countable space. Hence X has not any uniform base at non-isolated

points. ¤

Example 3.4. Open and closed map doesn’t inversely preserve spaces with uniform

base at non-isolated points.

Proof. Let X = [0, ω1] be an usually ordered space. Put f : X → X/X be a

quotient map by identifying X to a single point. Then it is obvious that f is an

open and closed map. But X has not any uniform base at non-isolated points. ¤
We don’t know whether spaces with an uniform base at non-isolated points are

inversely preserved by an open, closed and finite-to-one map. So we have the

following question.

Question 3.5. Are spaces with an uniform base at non-isolated points inversely

preserved by open, closed and finite-to-one maps?

By slightly modifying the proof in [7, Theorem 6], we can obtain the following.

Theorem 3.6. Let f : X → Y be a closed, finite-to-one and local homeomorphism

map, where Y has an uniform base at non-isolated points. Then X has an uniform

base at non-isolated points.

It is well known that every open and k-to-one map is a closed and locally home-

omorphism map. Hence, we have the following corollary.

Corollary 3.7. Open and k-to-one maps inversely preserve spaces with an uniform

base at non-isolated points.

Finally, we consider the inverse image of spaces with an uniform base at non-

isolated points under the irreducible perfect maps.

Lemma 3.8. Let X be regular and metacompact at non-isolated points. If {Un}n

is a sequence of open coverings of X, then there exists a sequence {Vn}n of open

coverings of X such that, for any y ∈ Xd,
∩

n∈N st(y,Vn) =
∩

n∈N st(y,Vn) ⊂∩
n∈N st(y,Un).
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Proof. Since X is regular and metacompact at non-isolated points, there exists a

sequence {Vn}n of open coverings of X satisfying the following conditions:

(i) For each n ∈ N, Vn is point-finite at non-isolated points and refines

(∧i<nVi)
∧

(∧i≤n(Ui);

(ii) For any V ∈ Vn and i < n, there exists a W ∈ Vi such that V ⊂ W .

Let y ∈ Xd. For each n ∈ N, there are only finitely many members of Vn

which contains y. Hence st(y,Vn+1) = ∪{V : y ∈ V ∈ Vn+1} ⊂ st(y,Vn). Thus∩
n∈N st(y,Vn) =

∩
n∈N st(y,Vn) ⊂

∩
n∈N st(y,Un). ¤

Lemma 3.9. Let X be a regular space, where X has a Gδ-diagonal at non-isolated

points. If X is metacompact at non-isolated points, then X has a G∗
δ-diagonal at

non-isolated points.

Proof. It is easy to see by Lemma 3.8. ¤

Lemma 3.10. Let X be a regular space, where X has a G∗
δ-diagonal at non-isolated

points. If X is a w△-space at non-isolated points, then X is a developable space at

non-isolated points.

Proof. let {Un}n and {Vn}n be a G∗
δ-diagonal at non-isolated points and a w△-

sequence at non-isolated points, respectively. Then {Un ∧Vn}n is a development at

non-isolated points for X. Indeed, for any x ∈ X − I and x ∈ U with U ∈ τ(X),

there exists an m ∈ N such that x ∈ st(x,Un ∧ Vn) ⊂ U . Suppose not, then

st(x,Un ∧ Vn) ̸⊂ U for any n ∈ N. We can choose a point xn ∈ st(x,Un ∧ Vn) \ U

for any n ∈ N. Since st(x,Un ∧ Vn) ⊂ st(x,Vn), xn ∈ st(x,Vn). Hence {xn} has

a cluster point. Let y be a cluster point of {xn}. Since st(x,Vn) ⊂ st(x,Vn),

y ∈ st(x,Vn). Hence y = x because
∩

n∈N st(x,Vn) = {x}. Thus {xn} has only one

cluster point x. But xn /∈ U for any n ∈ N, a contradiction. ¤

Lemma 3.11. Let f : X → Y be an irreducible perfect map, where Y is a w△-space

at non-isolated points. Then X is a w△-space at non-isolated points.

Proof. Let {Un}n be a w△-sequence at non-isolated points for Y . We only prove

that {f−1(Un)}n is a w△-sequence at non-isolated points for X. Let x ∈ X − I(X)

and xn ∈ st(x, f−1(Un)) for each n ∈ N. Then f(xn) ∈ st(f(x),Un). Since f is

an irreducible map, f(x) ∈ Y − I(Y ). Hence {f(xn)} has a cluster point in Y .

Since f is a perfect map, {xn} has a cluster point in X. Hence {f−1(Un)}n is a

w△-sequence at non-isolated points for X. ¤

Lemma 3.12. Let f : X → Y be an irreducible perfect map, where X is regular

and has a Gδ-diagonal. If Y is metacompact at non-isolated points, so is X.

Proof. Let U be an open covering for X. There exists U(y) ∈ U<ω such that

f−1(y) ⊂ ∪U(y) for any y ∈ Y . Then there exists an open neighborhood Vy of y
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such that f−1(Vy) ⊂ ∪U(y). Since {Vy : y ∈ Y } is an open covering for Y , there

exists a point-finite open refinement {Wy : y ∈ Y } at non-isolated points such that

Wy ⊂ Vy for any y ∈ Y . Hence {f−1(Wy) ∩ U : y ∈ Y, U ∈ U(y)} is a point-finite

open refinement at non-isolated points of U . ¤

Theorem 3.13. Let f : X → Y be an irreducible perfect map, where X is regular

and has a Gδ-diagonal. If Y has an uniform base at non-isolated points, so does

X.

Proof. It is easy to see by Lemmas 3.8, 3.9, 3.11, 3.12 and 2.1. ¤
We don’t know whether we can omit the condition “irreducible map” in Theo-

rem 3.13. So we have the following question.

Question 3.14. Let f : X → Y be a perfect map, where X is regular and has

a Gδ-diagonal. If Y has an uniform base at non-isolated points, does X have an

uniform base at non-isolated points?
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