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1. Introduction

This paper is devoted to discussing the generalized metrizable properties on topological algebra. As is known to all,
every first-countable topological group is metrizable. However, this does not hold for paratopological group. The Sorgenfrey
line [11, Example 1.2.2] with the usual addition is a first-countable paratopological group but not metrizable. More even,
we can see in Example 2.1 that a developable paratopological group is unnecessary to be metrizable. We prove that every
paratopological group with a left-invariant symmetric is metrizable. Also we discuss the following questions:

Question 1.1 (Arhangel’skii conjecture). S, cannot be embedded into a sequential topological group.

Question 1.2. ([19, Problem 15]) Let G be a topological group which is a k-space with a o-compact-finite k-network, or a
space with a point-countable determining cover by metric spaces. Is G paracompact (or meta-Lindelsf)?

Question 1.3. (|23, Question 3.10]) Let G be a topological group determined by a point-countable cover consisting of bise-
quential spaces. If G is an A-space [21], is it metrizable?
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In [19], a stronger version of Question 1.3 is asked.

Question 1.4. ([19, Problem 16(b)]) Let G be a topological group determining by a point-countable first-countable subsets.
If G is an A-space, is G metrizable?

Question 1.5. ([10, Question 4.3]) Is a symmetrizable, Baire, semitopological topological group a topological group?

We prove that a sequential topological group with a point-countable k-network is metrizable or a topological sum of
cosmic subspaces. So Question 1.1 is true if G has a point-countable k-network. It is known that a space having a o-
compact-finite k-network or determining by a point-countable metric subsets has a point-countable k-network, and note
that k-space with a point-countable k-network is a sequential space [13], hence the answer for Question 1.2 is positive.
We also prove that a paratopological group determined by a point-countable cover consisting of first-countable subsets is
first-countable if it contains no closed copy of S,,. It gives an affirmative answer to Question 1.4 (note: an A-space contains
no closed copy of S,, [20]) and a partial answer to Question 1.3. We present a separable, semi-metric, semitopological group
with Baire property that is not a paratopological group, which give a negative answer to Question 1.5. In the last section,
we discuss remainders of (para-)topological groups and slightly improve Arhangel’skii’'s Theorem [3].

R, Q, N denotes the set of all real, rational and natural numbers. e denotes the neutral element of a group. Reader may
refer to [11,12] for notations and terminology not explicitly given here.

2. First-countable paratopological groups

All spaces in this section are Hausdorff unless stated otherwise.

Recall that a topological group G is a group G with a (Hausdorff) topology such that the product mappings of G x G
into G is jointly continuous and the inverse mapping of G onto itself associating x~! with arbitrary x € G is continuous.
A paratopological group G is a group G with a topology such that the product mappings of G x G into G is jointly continuous.
A semitopological group G is a group G with a topology such that the product mappings of G x G into G is separately
continuous. In this section, we shall show that every first-countable paratopological group is quasi-metrizable.

A function d : X x X — Rt U {0} is called a quasi-metric (non-Archimedean quasi-metric) [12] on the set X if for each
X,¥,z€ X, (i) d(x,y) =0 if and only if x =y; (ii) d(x,2) <d(x,y) +d(y,2) (d(x,z) < max{d(x,y),d(y, z)}). A topological
space X is said to be quasi-metrizable (non-Archimedean quasi-metrizable) [12] if there is a quasi-metric (non-Archimedean
quasi-metric) on X such that {B(x, €): ¢ > 0} forms a local base at each x € X, where B(x, &) ={y € X: d(x, y) < €}. Every
non-Archimedean quasi-metrizable space is quasi-metrizable. The Sorgenfrey line [11, Example 1.2.2] is a non-Archimedean
quasi-metrizable space.

The following proposition was proved by Ravsky [25], we present a new proof here.

By using the same proof of [12, Theorem 10.2], we have the following.

Lemma 2.1. A Hausdorff space (X, t) is quasi-metrizable if and only if there is a function g : w x X — t such that (i) {g(n, x): n € w}
is a local base at x; (i) y e gln+1,x) = gn+ 1, y) C g(n, x).

Proposition 2.1. Every Hausdorff first-countable paratopological group is quasi-metrizable.

Proof. Suppose (X, 7) is a first-countable paratopological group. Let {V,: n € w} be a countable local base at the neutral
element e such that Vﬁﬂ C Vp. Define g: w x X — t as follow: g(n,x) =xV, for each n € w and x € X. It is obvious that
{g(n,x): n € w} is a local base at x. Suppose y € g(n+1, x), then y € V1, y =xv for some vi € V1. Take z€ g(n+1, y),

then z = yv; for some v, € Vyy1. z=yvy =xv1vy € XV Vipy1 CxVy = g(n, x). By Lemma 2.1, X is quasi-metrizable. O
Question 2.1. [s a first-countable paratopological group non-Archimedean quasi-metrizable?

Recall some generalized metrizable spaces. Let (X, 7) be a topological space. A function g :w x X — 7 satisfies that
x € g(n,x) for each x € X, n € w. A space X is a B-space (Hodel, [12, Definition 7.7]) if there is a function g:w x X >t
such that if x € g(n, x,) for each n € w, then the sequence {x,} has a cluster point in X. A space X is a y-space (Hodel, [12,
Definition 10.5]) if there exists a function g : w x X — t such that (i) {g(n, x): n € w} is a local base at x € X; (ii) for each
n € w and x € X, there exists an m € w such that y € g(m, x) implies g(m, y) C g(n, x).

The B-spaces are quite general [12]: Among Hausdorff spaces, all wA-spaces, semi-stratifiable spaces, X-spaces are
B-spaces.

Every quasi-metrizable space is a y-space. Hodel [12, Theorem 10.7] proved that if a Hausdorff space X is a -space and
a y-space, then X is developable.? So we have the following.

2 A space X is developable [12] if there is a sequence {4} of open covers of X such that {st(x,1): n € w} forms a local base at x for every x € X, where
st(x,Un) = J{U € Un: x e U}.
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Corollary 2.1. If G is a first-countable Hausdorff paratopological group and a B-space, then G is developable.

Remark. The condition ‘B-space’ is essential. Sorgenfrey line [11, Example 1.2.2] is a non-developable first-countable
paratopological group. A p-space need not be a 8-space, the authors do not know the following.

Question 2.2. Let G be a first-countable paratopological group, if G is a p-space, is G developable?

Since among submetacompact spaces, a p-space is equivalent to a wA-space, hence a submetacompact p-space is a
B-space. We may ask the following question:

Question 2.3. s every regular T, first-countable paratopological group submetacompact?

A space X is said to be weakly first-countable [1] if each point in X has a countable weak-base. Nedev and Choban [22]
proved that every weakly first-countable topological group is metrizable, and Nyikos [24] proved the following.

Lemma 2.2. (|6, Theorem 4.7.5]) Every weakly first-countable Hausdorff paratopological group is first-countable.

A function d : X x X — R* U {0} is a symmetric on the set X if, for each x,y € X, (i) d(x,y) =0 & x=y; (ii) d(x, y) =
d(y,x). A space X is said to be symmetrizable if there is a symmetric d on X satisfying the following condition: U C X is
open if and only if for each x € U, there exists € > 0 with B(x,&e) ={y e X: d(x,y) <e}C U.

Corollary 2.2. ([16, Theorem 2.2]) If G is a symmetrizable paratopological group, then G is developable.

Proof. Since every symmetrizable space is weakly first-countable, G is first-countable by Lemma 2.2. Since every first-
countable symmetrizable space is a S-space [12, Theorems 9.6 and 7.8], G is developable by Corollary 2.1. O

Arhangel’skii [2] proved that a bisequential topological group is metrizable. It is natural to ask the following.
Question 2.4. Is a regular Tq, bisequential paratopological group first-countable?

In fact, the authors even don’t know if a countable, bisequential paratopological group is first-countable.
Every symmetrizable paratopological group is developable, hence a p-space. Bouziad [8] proved that a regular Tq, Baire
semitopological group that is a p-space is a topological group. Then we have the following corollary.

Corollary 2.3 (Arhangel’skii and Reznichenko). ([5]) Every regular T, Baire symmetrizable paratopological group is a metrizable
topological group.

Example 2.1. There exists a separable, developable, Hausdorff paratopological group that is not metrizable.
Proof. Let (R, +), (Q, +) be real numbers, rational numbers groups with usual addition respectively. Let (G, +) = (R, +) x
(Q, +), and define
(a1.11) + (a2.12) = (@1 +az.11 +712), foreach (ar.r), (az.12) € (G, +).
Then (G, +) is a Abelian group. Define a neighborhood base of (a,r) € G as follow:
Ban ={{@n}u(@-1/n,a+1/n) x (r,r+1/n)):n e N}.

G is a topological space with topology generated by | J{B,r: (a,r) € G}. It is easy to see that (G, +) is a Hausdorff space.
Since

{(@r)}Ua—1/4n,a+1/4n) x (r,r1 +1/4n) + {(b,12)} U (b — 1/4n,b + 1/4n) x (rz, 12 + 1/4n)
cf{@+b,ri+r)fU@+b—1/n,a+b+1/n) x (r + 12,11 + 12+ 1/n),

the operation ‘4’ is jointly continuous, hence (G, +) is a first-countable paratopological group. G is also separable since
Q x Q is a countable dense subset of G. Fix r € Q, it is easy to see that {(a,r): a € R} is closed discrete (uncountable) subset
of G, then G is not metrizable.

Since G = UrEQ{(a,r): a € R}, then G has a o-discrete network, hence it is a o-space, therefore it is a S-space [12,
Theorem 7.8]. By Corollary 2.1, G is a developable space. O
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Remark. Example 2.1 gives a partial answer to [25, Question 3.2]: Is every Moore paratopological group metrizable? Exam-
ple 2.1 also shows that a first-countable paratopological groups need not be meta-Lindeldf.

Definition 2.1 (Borges). ([12, Definition 5.6]) A space is called stratifiable if there is a function G which assigns to each n € w
and closed set H C X, an open set G(n, H) containing H such that

(i) H={peow G, H);
(ii) H ¢ K implies G(n, H) C G(n, K);
(iii) H={pee G, H).

Lemma 2.3. ([12, Theorem 5.8]) A regular T space (X, T) is stratifiable if and only if there exists a function g : w x X — t such that
(i) {x} = Mhew &M, x); (i) if y € g(n, xy), then x, — y; (iii) if y ¢ H, where H is closed, then y ¢ | J{g(n, x): x € H} for somen € w.

A symmetric d : G x G — RT U {0} of a paratopological group G is called left-invariant if for any a,x,y € G, d(x, y) =
d(ax, ay).

Theorem 2.1. Let G be a regular Ty paratopological group with a left-invariant symmetric. Then G is metrizable.

Proof. Let d: G x G — RT U {0} be a left-invariant symmetric, and let e be the neutral element of G. Since G is weakly
first-countable, by Lemma 2.2, G is first-countable, hence G is quasi-metrizable by Proposition 2.1.
Now we prove that G is a stratifiable space. Put

B(x,1/2")={y € G:d(x,y) <1/2"},

and fix a local base {V;: n € )} at e such that V, C int(B(e, 1/2%)), V2, C V, and d(e,x) > 1/2k+1 if x ¢ V,, where
n < kp < kp41. Define

gn,x) =xV,, foreachnew, xeG.
Obviously, (i) of Lemma 2.3 is satisfied. For each n € w, if y € g(n, x;) =x,V,, then x;ly e Vy, so
d(xn, y) :d(x;lxn,xn’ly) :d(e,x;ly) <1/2k,
hence x, — y. (ii) of Lemma 2.3 is satisfied. Let H be a closed subset of G, y ¢ H, then yV, N H = for some n € w.

Claim. yV, 1, Ngn+2,x) = for each x € H.

Suppose not, let z € yV;42 NxXVnio, then X 'z € Vypa, d(z,x) =d(x 'z, e) < 1/2kn+2, z7x € V1, otherwise d(z~'x, e) >
1/2""+2. Since z71x € Vypq, X € 2Vyy1 C YVini2 Vg1 C yVy, this is a contradiction with yV, N H = @.

YVnpN(U{gm+2,%x): xe H}) =@, then y ¢ | J{g(n + 2, x): x € H}. By Lemma 2.3, G is stratifiable, hence G is metrizable
by [12, Corollary 10.8(ii)]. O

3. Topological groups with a point-countable covers

All spaces in this section are regular T; unless stated otherwise.

A cover P of a topological space X is point-countable (point-finite) if every point of X belongs to at most countably many
(finitely many) elements of P. For a cover P of a space X we say that X is determined by P [13] provided that a set F C X
is closed in X if and only if its intersection F N P with every P € P is closed in P.

Let P be a family of subsets of a space X. Then P is a cs-network at a point x € X if whenever {x,} is a sequence
converging to x and U is a neighborhood of x, there are k € w and P € P such that {x} U {x,: n >k} C P C U. Similarly, P is
a cs*-network at a point x € X if whenever {x,} is a sequence converging to x and U is a neighborhood of x, there are an
infinite A C w and P € P such that {x} U{x,: ne A}C P C U.

Lemma 3.1. Let X be a space determined by a point-countable cover P consisting of first-countable subsets. Then X is a sequential
spaces with a countable cs-network at each point in X.

Proof. Let Z be the disjoint topological sum P of P, and f:Z — X be the obvious map. Then f is a quotient map by
[13, Lemma 1.8]. Since Z is first-countable, X is a sequential space. Fix a point x € X, and let
Px={P e€P:xeP}={Pp:n e w}.

Each P, is first-countable, let {V (n,i): i € w} be countable local base at x in Py, then {V(n,i): n,i € w} is a countable cs*-
network at x. In fact, let {x;} be a sequence converging to x € U with U open in X, then there is a sequence L converging
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to some point z in Z such that f(L) is a sequence of {x;} by [27, Lemma 1.6]. Since z € f~1(x) c f~1(U), then z=x € P,
in Z for some n€w, and V(n,m) Cc f~1(U)N P, in Z for some m € w. We can assume that L c V(n,m) in Z, then
{x}U f(L) c V(n,m) c U in X. Hence {V(n,i): n,i € w} is a countable cs*-network at x. By [26, Lemma 2.2], X has a
countable cs-network at every x € X. O

The S, is the quotient space obtained from the disjoint sum of ¥ many convergent sequences vis identifying limit points
of all these sequences. S, is called sequential fan.

A topological space X is called an o4-space (a7-space), if for any sequence S, C X (n € w), converging to a point x € X
there is a sequence S C X converging to x (some point y € X) and such that S; NS # ¢ for infinitely many sequences S,.

Lemma 3.2. If a sequential space X has no closed copy of S,,, then X is an o7-space.

Proof. Let {S;: n € w} be a collection of convergent sequences in X with S, — x € X for each n € w. Put Z = {x} U
(U{Sn: ne w)).

If Z is not closed in X, there is a sequence S C Z such that S converges to some point y € X \ Z because X is a
sequential space. Then S, NS # ¢ for infinitely many sequences Sy. If Z is closed in X, then it is not a copy of S,. There
exists xi € Sp, (k € w) such that {x;: k € w} is not closed in Z. Thus there is a convergent sequence S C {x;: k € w}. Hence
X is an a7-space. O

Theorem 3.1. Let G be a paratopological group determined by a point-countable cover consisting of first-countable subsets. Then G is
first-countable if it contains no closed copy of S,.

Proof. By Lemmas 3.1 and 3.2, G is an a7-space. Then G has countable sb-character® by the same proof of [7, Lemma 3]. It
is easy to check that a sequential space having countable sh-character is weakly first-countable, then G is first-countable by
Lemma 2.2. O

Corollary 3.1. Let G be a topological group determined by a point-countable cover consisting of first-countable subsets. Then G is
metrizable if it contains no closed copy of S,,.

Remark. Corollary 3.1 gives a partial answer to Nogura-Shakhmatov-Tanaka’s question [23, Questions 3.9 and 3.10].
Corollary 3.2. A paratopological group G determined by a point-finite cover consisting of first-countable subspaces is first-countable.

Proof. By [23, Lemma 2.7], G is an og4-space. Then G contains no closed copy of S, hence G is first-countable by Theo-
rem 3.1. O

The following lemma is a easy modification of Lemma 4 in [7].

Lemma 3.3. Let (G, *) be a sequential topological group. Then G contains no closed copy of S, or every first-countable closed subset
of G is locally countably compact.

Proof. Suppose not, (G, x) contains a closed copy of S, = {e} U {xym: n,m € w}, where x, , — e as m — oo for each n € w.
(G, %) also contains a closed first-countable subset H that is not locally countably compact. Without loss of generality, we
assume e € H and e has a countable decreasing local base {V,: n € w} at e in H, each V; is not locally countably compact.
For each n € w, let {y, m: m € w} C Vy, be a closed discrete subset of H. Fix n, it is easy to see that Dp = {Xym * Yn.m: M € ®}
is closed and discrete in (G, *). Hence there exists k, € w such that e # xp m * yn.m for all m > k;. So we may assume that
e & {Xnm* Ynm: Mme w}. Let A={xym* ynm: n,m e w}, then e € A\ {e}. A is not closed, since (G, x) is sequential, there
is a sequence S C A convergent to a point a ¢ A. D, is closed and discrete, then SN D, is finite. Consequently, there is a
subsequence {Xy, m; * Yn;m;: 1 € @} C'S with njq > n;. Since y,- b — €, Xy m; * Yng.m; * Y 'y — Q%€ =, i.e. Xn, m; — a. This
is a contradiction since {xp, m,: i € w} is discrete. O

Recall the concept of k-networks. A collection P of subsets of a space X is a k-network [12] if whenever K is a compact
subset of an open set U in X, there exists a finite P’ C P such that K c [ JP' c U.

3 A space X is called to have countable sh-character if for every x € X, there is a countable network P at x consisting of the sequential neighborhoods
of x, that is, every sequence converging to x is eventually in each element of P.
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Remark. If a space X is determined by a point-countable cover P consisting of metric subsets. Then the space Z in the
proof of Lemma 3.1 is metrizable and the obvious map f :Z — X is a quotient s-map, hence X has a point-countable
k-network by [13, Theorem 6.1].

Lemma 3.4. Let X a k-space with a point-countable k-network, in which every closed first-countable subset is locally countably
compact. Then X has a point-countable k-network consisting of cosmic subsets.

Proof. Since every closed first-countable subset in X is locally countably compact, X has a point-countable k-network P
such that P is countably compact in X for each P € P by [15, Theorem 2.3]. For each P € P, P is compact metrizable by
[13, Theorem 4.1], then P is a cosmic subspace? in X.

Lemma 3.5. ([18, Corollary 2.7]) Let G be a sequential topological groups with a point-countable k-network consisting of cosmic
subsets. Then G has an open subgroup which is cosmic.

Theorem 3.6. Let G be a sequential topological group with a point-countable k-network. Then G is a metrizable space or a topological
sum of cosmic spaces.

Proof. By Lemma 3.3, we consider following two cases:
Case 1. G contains no closed copy of S,,.

Since a k-space that has a point-countable k-network and contains no closed copy of S, is weakly first-countable [14,
Theorem 3.13 and Corollary 3.9], hence G is metrizable by Lemma 2.2.

Case 2. Every closed first-countable subset is locally countably compact.
By Lemmas 3.4 and 3.5, G is a topological sum of cosmic subspaces. O
Corollary 3.3. A sequential topological group with a point-countable k-network is paracompact.

4. Symmetrizable semitopological groups

In [10], Cao, Drozowski and Piotrowski asked if every symmetrizable semitopological group is a Moore space. They
further asked “Must every symmetrizable Hausdorff Baire semitopological group be a topological group?” The answer is
“No”. In fact, a symmetrizable semitopological group need not be first-countable.

Example 4.1. There is a separable, symmetrizable, Hausdorff semitopological group that is not first-countable.

Proof. Let G = R? with usual addition “+”, then (G, +) is a group. Define d: G x G — R* U {0} as follow:
X=X, x#x,y=y"
! / /.
Ay, (K. y)) =11y =Y x=x, y#y"
(@ (y)) = Y A= v 2
1, otherwise.

It is easy to check that G is Hausdorff and d is a symmetric on (G, +). Endow (G, +) with the topology generated by d,
then (G, +) is a semitopological group. Q x Q C (G, +) is a countable dense subset of G. In fact, let V be an open subset
of G. Pick x = (¥, x") € V, there exists n € N such that {y € G: d(x,y) < 1/n} C V, we find 1’ € Q with |’ — x| < 1/n, then
z=(r",x") € V. There exists k € N such that {y € G: d(z,y) <1/k} Cc V, find " € Q with |r" —x"| < 1/k, then (r',1") e V,
therefore G is separable. But G is not first-countable since no sequence in Q x Q converges to (p’, p”), where p’, p” are
irrational numbers. O

A space X is said to be semi-metric [12] if there is a symmetric d on X such that for each x € X, {B(x, €): ¢ > 0} forms a
neighborhood base at x.

Example 4.2. There is a separable, Baire, semi-metric, semitopological group that is not a paratopological group.

4 A space is called a cosmic space if it has a countable network.
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Proof. Let G = (R2, +) with the ‘bowtie’ topology [12]; that is, a neighborhood U((s,t), &, 8) of a point (s,t) € G is the
‘bowtie’:

{s.0}u{(s.t):0<|s—5]<e,

(' —1t)/(s —s)| <5}

where ¢ >0 and § > 0 can vary.
Define

0, s=s,t=t;
d((s,0), (s, t')) =141, s=¢, t#£t
|s—s'|+|({t—t)/(s—s)|, otherwise.

It is easy to check that G is regular Tq, d is semi-metric and G is a separable, semitopological group.

We prove that G is a Baire space. Let R? be the real plane with usual topology.

Let {V,: n € N} be a sequence of open dense subsets of G. Fix n e N, for (s,t) € Vy, U((s,t),1/m,1/m) C V, for some
meN, let

Wa(s,t) =U((s,0), 1/m, 1/m)\ {(s.0)},  Wp= U{Wn(s, £): (s,t) € Vol

Since Wn(s,t) is open in R? and V, is dense in G, W, is an open dense subset in R2. It is well known that R? has Baire
property, then (),c5y Wa(C (Npey Vn) is dense in R2. Since every open subset in G contains an open subset in R?, Mhen Wa
is dense in G, hence ("), Vx is dense in G.

G is not a paratopological group.

Suppose not, then G is a Moore space by Corollary 2.2, hence a p-space. By Bouziad's result [8], G is a topological group,
hence a separable metric space. But it is easy to see {(0,t): t € R} is discrete, this is a contradiction. O

5. Remainders of (para-)topological groups

All spaces in this section are regular T unless stated otherwise.

In this section, we discuss the remainders of topological groups and paratopological groups in Hausdorff compactifica-
tions.

By a remainder of a Tychonoff space X we understand the subspace bX \ X of a Hausdorff compactification bX of X.

A space X is said to have a regular Gs-diagonal if the diagonal A = {(x, x): x € X} can be represented as the intersection
of the closures of a countable family of open neighborhoods of A in X x X. According to Zenor [28], a space X has a regular
Gs-diagonal if and only if there exists a sequence {Gp: n € w} of open covers of X with the following property:

(*) For any two distinct point y and z in X, there are open neighborhoods Oy and O of y and z, respectively, and k € @
such that no element of Gy intersects both Oy and 0.

Arhangel’skii [3] proved that if a remainder of a non-locally compact topological group in a Hausdorff compactification
has a G;-diagonal, then G is separable and metrizable. This is not true when G is a paratopological group. In fact, Alexan-
dorff’s double-arrow space is a Hausdorff compactification of Sorgenfrey line, its remainder is still a copy of Sorgenfrey line,
so the remainder has a regular Gs-diagonal [16], but Sorgenfrey line is not metrizable. We may ask the following question:

Question 5.1. Let G be a non-locally compact paratopological group. Suppose the remainder Y = bG \ G has a regular G-
diagonal, does G have a regular Gs-diagonal?

The following theorem gives a partial answer to the above question.

Theorem 5.1. Let G be a non-locally compact Abelian paratopological group in which every compact subset is first-countable. Suppose
the remainder Y = bG \ G has a regular Gs-diagonal, then G has a regular Gs-diagonal.

Proof. We consider following two cases:
Case 1. Y is pseudocompact.

Since Y has a regular Gs-diagonal, the Y is metrizable, hence Y is compact. It means that G is locally compact. This is a
contradiction.

Case 2. Y is not pseudocompact.
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By [4, Lemma 2.1], there exists a non-empty compact subspaces F of G which has a countable strong 7 -base® {V,: n € N}
in G, we may assume V1 C V; (in fact, we may consider {U@,< Va: ke N}).

Claim. There exists x € F such that any neighborhood of x in G meets every V.

Suppose not, for each x € F, there is an neighborhood V (x) of x in G and n(x) € N such that V(x) N V,, =@ for n > n(x).
F CU{V (x;): i <k} for some k. Let no = max{n(x;): i <k}, Vo N (U{V (x;): i <k}) =@ for each n > ng, this is a contradiction.

Fix x € F such that any neighborhood of x meets every V. F is first-countable, let {W,: n € N} be a decreasing base
at x in F. W, = F N Uy, where U, is open in G, we may assume U,y1 C Up. Let R, =V, NU, forneN, {R;: ne N} is a
decreasing strong 7r-base converging to x. Without loss of generality, we assume x =e.

Let G, = {xR,: x € G} for each n, then {G,: n € N} is a sequence of open coverings of G. By Zenor's characterization [28]
of regular Gs-diagonal, we only prove the following: For y,z € G, y # z, there is k € N such that no element of G intersects
both y’'Ry and z'Ry, where y € y'Ry, z € Z'Ry.

Suppose not; for any n € N, there is an element x,R; € G, and y,, z, € G such that y € y,Ry, z € zRy, ynRn NXyRp # 0
and z R, N xR, # @. Then there exist ay, by, ¢p, dn, Un, v € R, such that

Y=YnlUn, Z=2zvy and yuGn=Xpbn, XnCp=zpdy.

Then x, = by 'anyn = by 'anu;'y. On the other hand, x, = ¢;'zydy = ¢y 'dyvy 'z, Then by laguyly = c;'dpv; 'z, hence

yz=' = a;lc; v Tbpupdy. Since ancpvn — € (n — 00), then ancyvnay 'cy vy bpundy — yz=', bpupd, — yz~', but
bpund, — e, that means yz—! =e, therefore y = z. this is a contradiction.
G has a regular Gs-diagonal. O

Lemma 5.1. ([9]) Suppose X is of countable tightness and A C X. If P is any point-countable collection of X, then there are at most
countably many minimal finite subcollections F C P such that A C ([ F)°.

Let X be a space and x € X. A collection of nonempty open sets U/ of X is called a m-base at x if for every open
set O with x € O, there exists an U € U such that U C O. The idea of the following lemma bases on the proof of [13,
Proposition 3.2].

Lemma 5.2. Let X be a pseudo-open s-image of a space with a point-countable base. Then X has a countable  -base at each point.

Proof. Since X is a pseudo-open s-image of a space with a point-countable base, by [13, Propositions 6.2 and 6.3(a)], X is a
pseudo-open s-image of a metric space. Tanaka [27] characterized a pseudo-open s-images of a metric spaces as a Fréchet
space with a point-countable cs*-network. Let P be a point-countable cs*-network of X.

Fix x € X, if x is an isolated point, the X has a countable m-base at x. If x is not an isolated point, there is a
non-trivial sequence Co = {x,: n € N} converging to x. We may assume that each x, is not an isolated point. Otherwise
{{xn}: xn is an isolated point} is a countable 7r-base at x.

Put

F=|{F:FCCo, [Fl<w}, E={Co\F:FeF},
Gp = {(U 73’)0: EcC (U P’)O, P’ is a minimal finite subcollection ofP}.

By Lemma 5.1, G is countable.
Let G ={Gg: E€&}.

Claim. G is a w-base at x.

Suppose not, there is an open neighborhood V of x such that V contains no element of G. Without loss of generality, we
assume {x;: ne N} C V. Let Q={P € P: P C V}. Then there is no finite subcollection P” C Q such that ((JP”)° contains
any element of &.

Let Q(A)={P € Q: PNA#¢} for A C X. Since Q is point-countable, we write Q(Co) = {Pn.0: n € N}.

P does not contain any element of £, there exists x;, ¢ P74 Since X is Fréchet, there is a sequence C; C V' \ (P1,0U{x})
converging to xp,. We write Q(Cq1) ={Ppn,1: n € N}. (U{Pij: i <2, j<2})° does not contain any element of &, there exists
Xn, & (U{Pij: i< 2, j<2})° with ny > nq. Then there is a sequence C; C V \ ((U{P;,j: i <2, j < 2}) U{x}). By induction,
we can choose countable sequences C;, Xy, (i € N) such that n; <nj ifi< j, x¢ C; and G, NP; j=¢ for i <n, j <n. The

5 A strong w-base of a space X at a subset F of X is an infinite family y of non-empty open subsets of X such that every open neighborhood of F
contains all but finitely many elements of y.
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last condition implies that no P € Q meets infinitely many C;. Put C = | J{C;: i € w}, x € C, then there is a sequence K C V
converging to x. Since P is a cs*-network, there is a P € P such that x€ P C V and P contains infinitely many elements
of K, hence P € Q and P meets infinitely many C;, this is a contradiction. O

It was proven that [17, Theorem 4] a non-locally compact topological group G and its Hausdorff compactification bG are
separable and metrizable if its remainder is a quotient s-image of a space with a point-countable base and has countable
m-base at each point. By applying Lemma 5.2, we have the following.

Theorem 5.2. Let G be a non-locally compact topological group, if the remainder Y = bG \ G of a Hausdorff compactification of G is
a pseudo-open s-image of a space with a point-countable base, then G and bG are separable and metrizable.

Question 5.2. Let G be a non-locally compact topological group, if the remainder Y =bG \ G of a Hausdorff compactification
of G has a point-countable weak base, are G and bG separable and metrizable?

References

[1] A.V. Arhangel’skii, Mappings and spaces, Uspekhi Mat. Nauk 21 (4) (1966) 133-184 (in Russian).
[2] A.V. Arhangel’skii, On biradial topological spaces and groups, Topology Appl. 36 (1990) 173-180.
[3] A. Arhangel’skii, More on remainders close to metrizable spaces, Topology Appl. 154 (2007) 1084-1088.
[4] A. Arhangel'skii, Two types of remainders of topological groups, Comment. Math. Univ. Carolin. 49 (2008) 119-126.
[5] A.V. Arhangel’skii, E.A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005) 107-119.
[6] A.V. Arhangel’skii, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press, 2009.
[7] T. Banakh, L. Zdomskyi, The topological structure of (homogeneous) spaces and groups with countable cs*-character, Appl. Gen. Topology 5 (1) (2004)
25-48.
[8] A. Bouziad, Continuity of separately continuous group action in p-spaces, Topology Appl. 111 (1996) 119-124.
[9] D.K. Burke, E.A. Michael, On certain point-countable covers, Pacific J. Math. 64 (1976) 79-92.
[10] J. Cao, R. Drozowski, Z. Piotrowski, Weak continuity properties of topologized groups, Czechoslovak Math. J. 60 (135) (2010) 133-148.
[11] R. Engelking, General Topology, revised and completed edition, Heldermann-Verlag, Berlin, 1989.
[12] G. Gruenhage, Generalized metric spaces, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 423-501.
[13] G. Gruenhage, E. Michael, Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (2) (1984) 303-332.
[14] S. Lin, A note on the Arens’ space and sequential fan, Topology Appl. 81 (1997) 185-196.
[15] S. Lin, A note on closed images of locally compact metric spaces, Acta Math. Hungar. 109 (1-2) (2005) 157-162.
[16] C. Liu, A note on paratopological groups, Comment. Math. Univ. Carolin. 47 (4) (2006) 633-640.
[17] C. Liu, Remainders in compactifications of topological groups, Topology Appl. 156 (2009) 849-854.
[18] C. Liu, M. Sakai, Y. Tanaka, Topological groups with a certain point-countable cover, Topology Appl. 119 (2002) 209-217.
[19] C. Liy, Y. Tanaka, Spaces and networks: Special networks, in: E. Pearl (Ed.), Open Problems in Topology II, Elsevier Science Publishers B.V., 2007,
pp. 23-34.
[20] M. Michael, A quintuple quotient quest, Gen. Topology Appl. 2 (1972) 91-138.
[21] E. Michael, R.C. Olson, F. Siwiec, A-spaces and countably bi-quotient maps, Dissertationes Math. 133 (1976) 5-43.
[22] SJ. Nedev, M.M. Choban, On the theory of o-metrizable spaces I, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 27 (1) (1972) 8-15.
[23] T. Nogura, D. Shakhmatov, Y. Tanaka, Metrizability of topological groups having weak topologies with respect to good covers, Topology Appl. 54 (1993)
203-212.
[24] P. Nyikos, Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (4) (1981) 793-801.
[25] O.V. Ravsky, Paratopological groups I, Matematychni Studii 16 (2001) 37-48.
[26] M. Sakai, Function spaces with a countable cs*-network at a point, Topology Appl. 156 (2008) 117-123.
[27] Y. Tanaka, Point-countable covers and k-networks, Topology Proc. 12 (1987) 327-349.
[28] P. Zenor, On spaces with regular Gs-diagonals, Pacific J. Math. 40 (1972) 759-763.



	Generalized metric spaces with algebraic structures
	Introduction
	First-countable paratopological groups
	Topological groups with a point-countable covers
	Symmetrizable semitopological groups
	Remainders of (para-)topological groups
	References


