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Abstract: In this paper, we mainly discuss the images of metric spaces under sequence-
covering boundary compact maps. Some spaces having certain sn-networks or weak bases are
characterized by sequentially quotient maps, sequence-covering maps, or 1-sequence-covering
maps that the boundary set of each fiber is finite or compact. The main results are that (1)
Each sequence-covering and boundary compact map on a metric space is 1-sequence-covering;
(2) A space X is a sequentially quotient, boundary compact image of a metric space if and only
if it is an snf-countable space; (3) A space X is a sequence-covering, boundary compact and
s-image of a metric space if and only if it has a point-countable sn-network.
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0 Introduction

Topologists obtained many interesting characterizations in terms of certain point-countable
cover®.. Liul" discussed quotient maps with certain boundary, obtained new properties for
weakly first-countable spaces and spaces with a point-countable weak base, and proved that
if X has a point-countable weak base, there are a metric space M and a quotient s-map
f: M — X with [8f}(z)| < 1 for each z € X, which gave an affirmative answer to Lin’s

[, Problem2.3.18] - T'hig causes our attention to sequence-covering or sequential quotient

question
maps with boundary compact. The present paper contributes to the problems of characterizing
the certain sequence-covering images of metric spaces.

By R,Q,N, we denote the set of real numbers, rational numbers and positive integers,
respectively.

In this paper all spaces are T5, all maps are continuous and onto. Recalled some basic
definitions.

Let X be a space. For P C X, P is a sequential neighborhood of z in X if every sequence
converging to z is eventually in P. P is a sequentially open subset of X if P is a sequential
neighborhood of z in X for each z € P. X is said to be a sequential spacel¥l if each sequentially
open subset is open in X. X is said to be a Fréchet spacel¥l if z € P C X, there is a sequence
in P converging to z in X.

Definition 0.1 Let P = J,.x P- be a cover of a space X such that for each z € X, (a)
if UV € Py, then W C UNYV for some W € Pg; (b) P is a network of z in X, i.e., z € (| Px,
and if z € U with U open in X, then z € P C U for some P € P;.
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(1) P is called an sn-network®® for X if each element of P, is a sequential neighborhood of
z in X for each ¢ € X. X is called snf-countablel®  if X has an sn-network P such that each
P is countable.

(2) P is called a weak basell! for X if whenever G C X satisfying for each z € X there is
P e P, with P C G, G is open in X. X is called weakly first countablel!] or gf-countable!'8, if
X has a weak base P such that each P, is countable.

A related concept for sn-networks is cs-networks.

Definition 0.2 Let P be a family of subsets of a space X. P is called a cs-networkl” for
X if whenever a sequence {z,} converges to £ € U with U open in X there exist m € N and
P € P such that {z}U{z,:n2>m}CPCU.

It is easy to see that!®! .

(1) gf-countable spaces < snf-countable and sequential spaces;

(2) Weak bases = sn-networks = cs-networks for a space X;

(3) sn-networks = weak bases for a sequential space X.

Definition 0.3 Let f: X — Y be a map.

(1) f is a compact map(resp. s-map) if each f~1(y) is compact(resp. separable) in X;

(2) f is a boundary compact map(resp. boundary-finite map, at most boundary-one map) if
each 0f ~1(y) is compact(resp. finite, at most one point) in X; »

(3) [ is a quotient map if whenever f~!(U) is open in X, then U is open in Y;

(4) f is a pseudo-open map if whenever f~!(y) C U with U open in X, then y € Int(f(U));
(5) f is a sequence-covering map!*® if whenever {yn} is a convergent sequence in Y there is
a convergent sequence {z,} in X with each z, € f~1(y,);

(6) f is a sequentially quotient map'? if whenever {yn} is a convergent sequence in Y there
is a convergent sequence {zx} in X with each zx € f~1(y,, );

(7) f is an I-sequence-covering mapl® if for each y € Y there is ¢ € f~(y) such that
whenever {y,} is a sequence converging to y in Y there is a sequence {z,} converging to z in X
with each z, € f~1(yn);

(8) f is a pseudo-sequence-covering map!® if for each convergent sequence L in Y there is a
compact subset K in X such that f(K) = L.

Remind reader attention that the sequence-covering maps defined the above-mentioned are
different from the sequence-covering maps defined in [6], which is called pseudo-sequence-covering
maps in this paper.

It is obvious that

pseudo-sequence-covering maps

7

1-sequence-covering maps —— sequence-covering maps

sequential quotient maps.

Readers may refer to [3, 5| for unstated definitions and terminology.
1 Some Lemmas

In this section some technique lemmas are given.
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Lemma 1.1 Let f: X — Y be a map. Then

HIfXisa s.equential space, then f is a quotient map if and only if Y is a sequential space
and f is a sequentially quotient map.

(2) If X is a Fréchet space, then f is a pseudo-open map if and only if Y is a Fréchet space
and f is a sequentially quotient map.

The following Lemma give a positive answer for [9, Question 3.4.8] and improves the [10,
Theorem 2.2].

Lemma 1.2 Let X be a metric space and f : X — Y a boundary compact map. Then f is
sequentially quotient if and only if it is a pseudo-sequence-covering map.

Proof First, suppose that f is sequentially quotient. If {y,} is a non-trivial sequence
converging to yo in Y, put S; = {yo} U{yn : n € N}, X1 = f~1(S1) and g = f|x,. Thus g
is-a sequentially quotient, boundary compact map. So g is a pseudo-open map by Lemma 1.1.
Let {Un}nen be a decreasing neighborhood base of compact subset g~ (o) in X;. Thus {U, U
Int(g™'(y0))}nen is a decreasing neighborhood base of g2 (yo) in X1. Let V,, = U, UInt(g™ (%))
for each n € N. Then yo € Int(g(Va)), thus there exists i, € N such that y; € g(V,) for each
i 2 in, 50 g7 () N Vi, # 0. We can suppose that 1 < ip < in4;. For each j € N, if j < iy, let
zj € f7Hy;); ifin € J <ing1, let z; € FTHy;)NVn. Let K = 89~ (yo)U{z; : j € N}. Then K is
a compact subset in X, and g(K) = Sy, thus f(K) = S;. Hence f is a pseudo-sequence-covering
map.

Conversely, suppose that f is pseudo-sequence-covering. If {y,} is a convergent sequence in Y,
there is a compact subset K in X such that f(K) = {y,}. For each n € N, take z, € f~1(yn)NK.
Then the sequence {z,} has a convergent subsequence {zn, }. So f is sequentially quotient.
Lemma 1.38 Let f: X — Y be a map. Suppose {B,}nen is a decreasing network of
a point z in X and each f(B,) is a sequential neighborhood of f(z) in Y. If a sequence {y,}
converges to f(z) in Y, there is a sequence {z,} converging to z in X with each x,, € f~!(y,).

Lemma 1.4 Let f: X - Y and g:Y — Z be a boundary-finite map. Thengo f: X — Z
is a boundary-finite map.

Proof For each z € Z, (go f)}(2) = f g7 '(2)) = f~1(8971(z) UInt(g~(2))). Since
f~1(Int(g~1(2))) is open in X and 8g~!(z) is finite, thus d(go f) " (z) C U{8f  (y) : y €
08g~1(z)} is finite.

Lemma 1.5'4 Let f: M — X be an l-sequence-covering s-map from a metric space M
onto a space X. If 8f 1(z) C Int(f~I(z)) for each non-isolated point z € X, then there exists
a subspace My C M such that g = f|p, : M7 — X is an 1-sequence-covering, countable-to-one
map with each |8g~1(z)| < 1

Lemma 1.6 (1) Each snf-countable space is preserved by 1-sequence-covering maps.

(2) Each g f-countable space is preserved by 1-sequence-covering and quotient maps.

Lemma 1.71'2 A space X has a point-countable weak base if and only if it is a g f-countable
space with a point-countable cs-network.

2 Main Results

In {13, Theorem 4.4], the following result is proved: Each sequence-covering and compact
map on metric spaces is 1-sequence-covering. We will show a further result.
Theorem 2.1 Each sequence-covering and boundary compact map on metric spaces is
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1-sequence-covering.

Proof Let f: X — Y be a sequence-covering, boundary compact map, here X is a metric
space. For each ¢y € Y, we can assume that ¢ is a limit point of some non-trivial convergent
sequence {tx} inY.

Since X is a metric space, it has a base |,y Bn satisfying the following conditions (a)—(c)(see
[3):

(a) Each B, is a locally finite cover for X;

(b) Each B, ., is a star refinement of Bp;

(c) {Bn} is a development for X.

Let Pn = {f(B): B € B,, BNOf (to) # 0 and {tx} is eventually in f(B)} = {Py: a € ['n}.

(d) P is a non-empty finite set.

It is easy to see that P, is non-empty set for f is a sequence-covering map. P, is a finite set
because By, is local finite and 8f~1(ty) is compact.

(e) For each n € N, there is some f(B) € P, such that f(B) is a sequential neighborhood of
to and some convergent sequence L in B such that f(L) = K for each sequence K converging to
to in f(B).

In fact, Va € Ty, P, either is a sequential neighborhood of ¢y or not. Suppose (e) it not true,
there is some convergent sequence K, — tp such that (K, \ {tc}) N Py = 0, or K, C P, and
there is not any convergent sequence L, in B such that f(L,) = K, for some B € B, with
f(B) = Py. Let Kn = (Uqer, Ka) U {tk : k € N}. K, is a sequence converging to o in ¥
because I', is finite. Thus there is some convergent sequence L,, such that f(L,) = K, for f
is a sequence-covering map. So there is some B € B, such that L, is eventually in B, which
makes {t;} is eventually in f(B) and B N 8f~1(ty) # 0. There exists some a € ', such that
f(B) = P,. Thus (K, \ {te}) N Py # @ and there is some convergent sequence L in B such that
f(L) = K. This is a contradiction.

For each n € N, let U, = {z € X : f(B) is not a sequential neighborhood of ¢y in Y for each
B € (Bn)s}

(f) If z € Upn, then N(Bp11)z C Untr.

Suppose not, there is some p € N(Bp41)z \ Uny1. Thus there is some B € (Bp41), such that
f(B) is a sequential neighborhood of ¢y for Y by the definition of Uy,+;. Choose By € (Bp+1)z,
then p € BN By. Thus there is some By € B, such that BU By C B, by (b). Then B; € (By)z
and f(B;) is a sequential neighborhood of tg in Y. So z ¢ U, this is a contradiction.

(€) 0F H(to) € Unen Un-

Un C U{NBrs1)z : £ € Up} C Unyy by (f). I 8f(to) € U,en Un, there is some m € N
such that 8f~1(¢g) C Up, because 8f ~(t) is compact and N(Bny1): is open in X. Thus there
is some B € By, such that f(B) is a sequential neighborhood of t5 in Y and 8f~1(t;) N B # 0
by (e). So @ # 8f ~1(to) N B C X \ Up, this is a contradiction.

Fix 2o € 8f 1 (to) \ U,en Un. Then

(h) If {y;} is a sequence converging to to in Y, there is a sequence {z;} converging to o in
X with each z; € f~(y:).

For n € N, there is some B, € (B,,), such that f(B,) is a sequential neighborhood of ¢, for Y’
because xo ¢ Un. Thus {st(zo, Bn)} is a decreasing local base of z for X and each f(st(zo, Bn))
is a sequential neighborhood of to for Y. There is a sequence {z;} converging to z¢ in X with
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each z; € f~!(y;) by Lemma 1.3.

In a word, f is an 1-sequence-covering map.

Next, some characterizations of the images of metric spaces under sequentially quotient(resp.
sequence-covering), boundary compact maps are obtained.

Theorem 2.2 The following are equivalent for a space X:

(1) X is snf-countable;

(2) X is an image of a metric space under a sequentially quotient, at most boundary-one map;

(3) X is a sequentially quotient, boundary compact image of a metric space.

(4) X is a pseudo-sequence-covering, boundary compact image of a metric space.

Proof (1) & (2) was proved in [9, Corollary 2.3.17]. (2) = (3) is trivial. (3) & (4) is hold
by Lemma 1.2.

(3) = (1) Suppose that f : M — X is a sequentially quotient, boundary compact map, here
(M, p) is a metric space. Denoted the set of all isolated points of X by I. For each z € X \ I and
eachn €N, let V,(z) = {y € M : p(0f }(z),y) < 2}. Thus {Vy(z)}nen is a neighborhood base
of 3f ~(z) in M. Let By = {f(Va(z))}nen-

Put B=U{B, : z € X\I}{J{{z} : z € I}. Then B is an sn-network for X. Suppose not, there
are z € X \I and m € N such that f(V,,(z)) is not a sequential neighborhood of z in X. There is
a sequence {z,} in X\ f(Vin(z)) converging to z. Thus there is a sequence L converging a point
of 8f~!(z) in M such that f(L) is a subsequence of {z,} because f is sequentially quotient.
Since L is eventually in Vin(z), f(L) is eventuaily in f(Vin(x)), a contradiction. Hence B is an
sn-network of X, and X is snf-countable.

By Theorem 2.2, Lemma 1.1 and Lemma 1.4 the following corollaries are obtained.

Corollary 2.3 (1) Each snf-countable space is preserved by a sequentially quotient,
boundary-finite map.

(2) Each gf-countable space is preserved by a quotient, boundary-finite map.

Corollary 2.4!!4  The following are equivalent for a space X:

(1) X is gf-countable;

(2) X is an image of a metric space under a quotient, at most boundary-one map;

(3) X is a quotient, boundary compact image of a metric space.

Theorem 2.5 The following are equivalent for a space X:

(1) X has a point-countable sn-network;

(2) X is an image of a metric space under an 1-sequence-covering, countable-to-one and at
most boundary-one map;

(3) X is an image of a metric space under a sequentially quotient, at most boundary-one and
s-map.

Proof (2) = (3) is trivial.

(3) = (1) Suppose that f : M — X is a sequentially quotient, s-map with each |8f~!(z)| < 1,
here M is a metric space. Let B be a point-countable base for M and put

B ={BeB:Bnajf z)#0 for some z € X};
P = {f(B): B € B'}|J{{z} : = is an isolated point of X}.
Since f is an s-map, P is point-countable. If z is an isolated point for X, let P, = {z}; if  is
a non-isolated point, let P, = {f(B): BNaf (z) # 0, B € B}. Then P = |J,.x Pz. To prove
that P is an sn-network for X, it is only need to show that f(B) is a sequential neighborhood



76 uoO¥ # B 39%

of non-isolated point z in X for each f(B) € P;. In fact, since {B € B: BNaf~(z) # 0}
is a local base of one point set 8f ~'(z) in M, f(B) is a sequential neighborhood of z in X by
sequential quotientness of f.

(1) = (2) Let P = F U {{z} : z is a non-isolated point of X}, here F is a point-countable
sn-network for X. Denoted P by {P, : @ € I}. Endow I; = I with discrete topology for each
i € N and put

M= {a = (o) € HI" : { Py} is a network for some point z, in X}.
ieN

Define f : M — X by f((es)) = Zo. Then M is a metric space and f is an s-mapl® Lemma1.3.8]
We prove that f is an 1-sequence-covering map. For each z € X, there is a network {P,,} C F
of z in X such that each P,, is a sequential neighborhood of z in X. Put 8 = (a;) € [[;en Ii-
Then § € f~(x). Foreach n € N, let By = {(v;) € M : 4; = ; for each i < n}. Then {By}nen
is a decreasing local base of § in M, and f(B,) = ¢, Fa;- In fact, suppose v = (v;) € B, then
F(7) € Mien Py C Nign Pai- Thus f(Bn) C g, Pa;- On the other hand, let z € (¢, Pa,,
take a network {Ps} of z in X such that §; = o; when i < n. Let § = (&) € [[;en i
Then z = f(8) € f(Ba), thus g, Pa; C f(Bn). Hence f(B,) =
neighborhood of z in X. By Lemma 1.3, f is 1-sequence-covering.

i<n oy 18 2 sequential

For each n € N, let 7, : HieN I; — I, be the projection. For each non-isolated point
z € X, put Vu = 7,2 (Ba) N M, here P, = {z}. Then V, is open in M and V, C f~'(z).
If () € 0f!(z), then N,y Pa: = {z}. For each n € N, define a;(n) € I; as follows: if
i < n,ai(n) = ag; if i > n,ai(n) = B;. Then (a;(n)) € Vi, C Int(f~1(z)) for each n € N,
and limy,—o0(c;(n)) = (o;) in M. Thus 8f~!(z) C Int(f~'(z)). By Lemma 1.5, there exists an
M, C M such that g = f|p, : M1 — X is an 1-sequence-covering, countable-to-one map with
each |0f1(z)| < 1.

Corollary 2.6 Let f: X — Y be a sequentially quotient, countable-to-one map with each
|0f1(y)| < 1. If X has a point-countable sn-network, so is Y.

Corollary 2.7(14  The following are equivalent for a space X:

(1) X has a point-countable weak base; ;

(2) X is an image of a metric space under an quotient, countable-to-one and at most boundary-
one map;

(3) X is an image of a metric space under a quotient, at most boundary-one and s-map.

Corollary 2.8 The following are equivalent for a space X:

(1) X has a point-countable sn-network;

(2) X is an 1-sequence-covering s-image of a metric space;

(3) X is a sequence-covering, boundary compact s-image of a metric space;

(4) X is an l-sequence-covering, boundary compact s-image of a metric space.

Proof (1) = (4) can be obtained by Theorem 2.5. (4) = (3) is trivial. (3) = (2) can be
obtained by Theorem 2.1. (1) < (2) was proved in [8, Theorem 2.3].

Corollary 2.9 The following are equivalent for a space X:

(1) X has a point-countable weak base;

(2) X is an 1-sequence-covering, quotient s-image of a metric space;

(3) X is a sequence-covering, boundary compact and quotient s-image of a metric space;
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(4) X is an 1-sequence-covering, boundary compact and quotient s-image of a metric space.

Corollary 2.10 Spaces with a point-countable sn-network are preserved by 1-sequence-
covering, countable-to-one maps.

Proof Let X be a space with a point-countable sn-network, and f: X — Y an 1-sequence-
covering, countable-to-one map. There are a metric space M and an l-sequence-covering,
countable-to-one-map g : M — X such that each |9g~(z)| < 1 by Theorem 2.5(2). Then
h=fog: M —Y is an l-sequence-covering, s-map. So Y have a point-countable sn-network
by Corollary 2.8.

Corollary 2.11 Let f: X — Y be an 1-sequence-covering, countable-to-one map and Y a
sequential space. If X has a point-countable weak base, sois Y.

Proof Y is a gf-countable space with a point-countable sn-network by Lemma 1.6 and
Corollary 2.8. Thus Y has a point-countable weak base by Lemma 1.7.

3 Examples and Questions

Example 3.1 There is a space X which is an 1-sequence-covering, boundary compact and
quotient s-image of a metric space, but it is not any sequence-covering, compact image of a
metric space.

In fact, let X be the set R endowed with the pointed irrational extension topology!17: Example69]
Then X is a space with a countable base, which is not a metacompact space. Thus X is an
1-sequence-covering, boundary compact and quotient s-image of a metric space by Corollary
2.9. But X is not any sequence-covering compact image of a metric space, otherwise it is a
pseudo-open compact image of a metric space by Lemma 1.1, then it is a metacompact space, a
contradiction. ‘

Example 3.2 There exist a metric space M and a quotient and finite-to-one map f : M — X
satisfying the following conditions:

(1) X has not a point-countable cs-network;

(2) X is not a sequence-covering s-image of a metric space;

(3) f is not sequence-covering.

The space X is given in {12, Remark 14(2)], a space without any point-countable cs-network,
which is the image of a metric space M under a quotient and finite-to-one map f. Since
each space which is a sequence-covering s-image of a metric space has a point-countable cs-
network(11: Theorem 111 ' ¥ is not a sequence-covering s-image of a metric space. Thus f is not
sequence-covering. The example shows that the condition |8f~!(z)| < 1 can not be replaced by
boundary-finite in Theorem 2.5(3), Corollary 2.6.

Example 3.3 A space with a point-countable weak base is not preserved by an 1-sequence-
covering and one-to-one map.

Let Y be the Stone-Cech compactification SN. A space X is the set AN endowed with discrete
topology. Then X is a metric space, and any convergent sequence in Y is triviall3 Corollary 3.6.15]
Put f =idx : X — Y by the identical map. Thus f is an 1-sequence-covering and one-to-one
map, and Y has not a point-countable weak base.

Some questions are posed in the final.

Question 3.4 Are spaces with a point-countable sn-network preserved by a sequential
quotient, at most boundary-one and s-map?
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Question 3.5 Are spaces with a point-countable sn-network preserved by 1-sequence-
covering, s-map?

Question 3.6 Let f : X — Y be a sequence-covering, boundary compact map. Is f an
1-sequence-covering map if X is a space with a point-countable base or a developable space?

Question 3.7 Let X be an snf-countable space which is a sequentially quotient, s-image
of a metric space. Is X a sequentially quotient, boundary compact s-image of a metric space?

Question 3.8 Is a quotient and compact image of a metric space a quotient and countable-
to-one image of a metric space?

Acknowledgement The authors would like to thank Chuna Liu for sending us the preprint
paper [14].

References

[1] Arhangel’skii, A.V., Mappings and spaces, Russian Math. Surveys, 1966, 21: 115-162.
[2] Boone, J.R., Siwiec, F., Sequentially quotient mappings, Czech. Math. J., 1976, 26: 174-182.
[3] Engelking, R., General Topology (revised and completed edition): Heldermann Verlag, Berlin, 1989.
[4] Franklin, 8.P., Spaces in which sequences suffice, Fund. Math., 1965, 57: 107-115.
[5] Gruenhage, G., Generalized metric spaces, In: K. Kunen, J. E. Vaughan, eds., Handbook of Set-theoretic
Topology, Elsevier Science Publishers B V, Amsterdam, 1984, 423-501.
[6] Gruenhage, G., Michael, E. and Tanaka, Y., Spaces determined by point-countable covers, Pacific J. Math.,
1984, 113: 303-332.
[7) Guthrie, J.A., A characterization of Ro-spaces, General Topology Appl., 1971, 1: 105-110.
[8] Lin S., On sequence-covering s-maps(in Chinese), Advances in Mathematics(China), 1996, 25: 548-551.
[9] Lin S., Point-countable Covers and Sequence-covering Mappings(in Chinese): Science Press, Beijing, 2002.
[10] Lin S., A note on sequence-covering mappings, Acta Math. Hungar., 2005, 107: 193-197.
[11] Lin S., Liu C., On spaces with point-countable cs-networks, Topology Appl., 1996, 74: 51-60.
[12] Lin S., Tnanka, Y., Point-countable k-networks, closed maps, and related results, Topology Appl., 1994, 59:
79-86.
(13] Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl., 2001, 109: 301-314.
[14] Liu C., A note on point-countable weak bases, Questions Answers General Topology, 2007, 25: 57-61.
[15] Siwiec, F., Sequence-covering and countably bi-quotient maps, General Topology Appl., 1971, 1: 143-154.
[16] Siwiec, F., On defining a space by a weak base, Pacific J. Math., 1974, 52: 233-245.
[17] Steen, L.A., Seebach Jr, J.A., Counterexamples in Topology (second edition): Springer-Verlag, New York,
1978.

EBTERAFSIERNTARR
WAL, gk 13
(1 BMTEEBHER, WA, W, 363000, 2. FHNEHER, I, M, 352100)

WE: AXFTEWNRTEESHNFIRELRERR. AFFHE. FIEER 1- 75 &
EHAEIRESARRLNERLR sn WABEHZTH., TELRWT: (1) EEZHLHFF
MEARERHR 1- FIAERS; Q) FE X ZEECHNFFI AL RERAYANRY X
R oonf-B—THZE; ) ZFH X REESHMNFIREEZLRAE SHREALARY X AET
¥ sn- K.

XEE: FrIEBA; FIAEWRL, sn- W, HE



