On Sequence-covering Boundary Compact Maps of Metric Spaces

LIN Fucai^{1,*}, LIN Shou^{1,2,**},

(1. Department of Mathematics, Zhangzhou Normal University, Zhangzhou, Fujian, 363000, P. R. China; 2. Institute of Mathematics, Ningde Teachers' College, Ningde, Fujian, 352100, P. R. China)

Abstract: In this paper, we mainly discuss the images of metric spaces under sequence-covering boundary compact maps. Some spaces having certain sn-networks or weak bases are characterized by sequentially quotient maps, sequence-covering maps, or 1-sequence-covering maps that the boundary set of each fiber is finite or compact. The main results are that (1) Each sequence-covering and boundary compact map on a metric space is 1-sequence-covering; (2) A space X is a sequentially quotient, boundary compact image of a metric space if and only if it is an snf-countable space; (3) A space X is a sequence-covering, boundary compact and s-image of a metric space if and only if it has a point-countable sn-network.

Key words: sequentially quotient maps; sequence-covering maps; sn-networks; weak bases MR(2000) Subject Classification: 54C10; 54D55; 54E40; / CLC number: O189.11 Document code: A Article ID: 1000-0917(2010)01-0071-08

0 Introduction

Topologists obtained many interesting characterizations in terms of certain point-countable cover^[9]. Liu^[14] discussed quotient maps with certain boundary, obtained new properties for weakly first-countable spaces and spaces with a point-countable weak base, and proved that if X has a point-countable weak base, there are a metric space M and a quotient s-map $f: M \to X$ with $|\partial f^{-1}(x)| \leq 1$ for each $x \in X$, which gave an affirmative answer to Lin's question^[9, Problem 2.3.18]. This causes our attention to sequence-covering or sequential quotient maps with boundary compact. The present paper contributes to the problems of characterizing the certain sequence-covering images of metric spaces.

By $\mathbb{R}, \mathbb{Q}, \mathbb{N}$, we denote the set of real numbers, rational numbers and positive integers, respectively.

In this paper all spaces are T_2 , all maps are continuous and onto. Recalled some basic definitions.

Let X be a space. For $P \subset X$, P is a sequential neighborhood of x in X if every sequence converging to x is eventually in P. P is a sequentially open subset of X if P is a sequential neighborhood of x in X for each $x \in P$. X is said to be a sequential space^[4] if each sequentially open subset is open in X. X is said to be a Fréchet space^[4] if $x \in \overline{P} \subset X$, there is a sequence in P converging to x in X.

Definition 0.1 Let $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$ be a cover of a space X such that for each $x \in X$, (a) if $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$; (b) \mathcal{P}_x is a network of x in X, i.e., $x \in \bigcap \mathcal{P}_x$, and if $x \in U$ with U open in X, then $x \in P \subset U$ for some $P \in \mathcal{P}_x$.

Received date: 2008-03-25.

Foundation item: Supported by the NSFC(No. 10571151). E-mail: * lfc19791001@163.com; ** linshou@public.ndptt.fj.cn

- (1) \mathcal{P} is called an $sn\text{-}network^{[8]}$ for X if each element of \mathcal{P}_x is a sequential neighborhood of x in X for each $x \in X$. X is called $snf\text{-}countable^{[9]}$, if X has an $sn\text{-}network <math>\mathcal{P}$ such that each \mathcal{P}_x is countable.
- (2) \mathcal{P} is called a weak base^[1] for X if whenever $G \subset X$ satisfying for each $x \in X$ there is $P \in \mathcal{P}_x$ with $P \subset G$, G is open in X. X is called weakly first countable^[1] or gf-countable^[16], if X has a weak base \mathcal{P} such that each \mathcal{P}_x is countable.

A related concept for *sn*-networks is *cs*-networks.

Definition 0.2 Let \mathcal{P} be a family of subsets of a space X. \mathcal{P} is called a cs-network^[7] for X if whenever a sequence $\{x_n\}$ converges to $x \in U$ with U open in X there exist $m \in \mathbb{N}$ and $P \in \mathcal{P}$ such that $\{x\} \cup \{x_n : n \ge m\} \subset P \subset U$.

It is easy to see that^[9]

- (1) gf-countable spaces $\Leftrightarrow snf$ -countable and sequential spaces;
- (2) Weak bases \Rightarrow sn-networks \Rightarrow cs-networks for a space X;
- (3) sn-networks \Rightarrow weak bases for a sequential space X.

Definition 0.3 Let $f: X \to Y$ be a map.

- (1) f is a compact map(resp. s-map) if each $f^{-1}(y)$ is compact(resp. separable) in X;
- (2) f is a boundary compact map(resp. boundary-finite map, at most boundary-one map) if each $\partial f^{-1}(y)$ is compact(resp. finite, at most one point) in X;
 - (3) f is a quotient map if whenever $f^{-1}(U)$ is open in X, then U is open in Y;
 - (4) f is a pseudo-open map if whenever $f^{-1}(y) \subset U$ with U open in X, then $y \in \text{Int}(f(U))$;
- (5) f is a sequence-covering $map^{[15]}$ if whenever $\{y_n\}$ is a convergent sequence in Y there is a convergent sequence $\{x_n\}$ in X with each $x_n \in f^{-1}(y_n)$;
- (6) f is a sequentially quotient $map^{[2]}$ if whenever $\{y_n\}$ is a convergent sequence in Y there is a convergent sequence $\{x_k\}$ in X with each $x_k \in f^{-1}(y_{n_k})$;
- (7) f is an 1-sequence-covering $map^{[8]}$ if for each $y \in Y$ there is $x \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to y in Y there is a sequence $\{x_n\}$ converging to x in X with each $x_n \in f^{-1}(y_n)$;
- (8) f is a pseudo-sequence-covering $map^{[6]}$ if for each convergent sequence L in Y there is a compact subset K in X such that $f(K) = \overline{L}$.

Remind reader attention that the sequence-covering maps defined the above-mentioned are different from the sequence-covering maps defined in [6], which is called pseudo-sequence-covering maps in this paper.

It is obvious that

pseudo-sequence-covering maps

1-sequence-covering maps

sequence-covering maps

sequential quotient maps.

Readers may refer to [3, 5] for unstated definitions and terminology.

1 Some Lemmas

In this section some technique lemmas are given.

Lemma 1.1^[2] Let $f: X \to Y$ be a map. Then

- (1) If X is a sequential space, then f is a quotient map if and only if Y is a sequential space and f is a sequentially quotient map.
- (2) If X is a Fréchet space, then f is a pseudo-open map if and only if Y is a Fréchet space and f is a sequentially quotient map.

The following Lemma give a positive answer for [9, Question 3.4.8] and improves the [10, Theorem 2.2].

Lemma 1.2 Let X be a metric space and $f: X \to Y$ a boundary compact map. Then f is sequentially quotient if and only if it is a pseudo-sequence-covering map.

Proof First, suppose that f is sequentially quotient. If $\{y_n\}$ is a non-trivial sequence converging to y_0 in Y, put $S_1 = \{y_0\} \cup \{y_n : n \in \mathbb{N}\}$, $X_1 = f^{-1}(S_1)$ and $g = f|_{X_1}$. Thus g is a sequentially quotient, boundary compact map. So g is a pseudo-open map by Lemma 1.1. Let $\{U_n\}_{n\in\mathbb{N}}$ be a decreasing neighborhood base of compact subset $\partial g^{-1}(y_0)$ in X_1 . Thus $\{U_n \cup \operatorname{Int}(g^{-1}(y_0))\}_{n\in\mathbb{N}}$ is a decreasing neighborhood base of $g^{-1}(y_0)$ in X_1 . Let $V_n = U_n \cup \operatorname{Int}(g^{-1}(y_0))$ for each $n\in\mathbb{N}$. Then $y_0\in\operatorname{Int}(g(V_n))$, thus there exists $i_n\in\mathbb{N}$ such that $y_i\in g(V_n)$ for each $i\geqslant i_n$, so $g^{-1}(y_i)\cap V_n\neq\emptyset$. We can suppose that $1< i_n< i_{n+1}$. For each $j\in\mathbb{N}$, if $j< i_1$, let $x_j\in f^{-1}(y_j)$; if $i_n\leqslant j< i_{n+1}$, let $x_j\in f^{-1}(y_j)\cap V_n$. Let $K=\partial g^{-1}(y_0)\cup\{x_j:j\in\mathbb{N}\}$. Then K is a compact subset in X_1 and $g(K)=S_1$, thus $f(K)=S_1$. Hence f is a pseudo-sequence-covering map.

Conversely, suppose that f is pseudo-sequence-covering. If $\{y_n\}$ is a convergent sequence in Y, there is a compact subset K in X such that $f(K) = \overline{\{y_n\}}$. For each $n \in \mathbb{N}$, take $x_n \in f^{-1}(y_n) \cap K$. Then the sequence $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$. So f is sequentially quotient.

Lemma 1.3^[8] Let $f: X \to Y$ be a map. Suppose $\{B_n\}_{n\in\mathbb{N}}$ is a decreasing network of a point x in X and each $f(B_n)$ is a sequential neighborhood of f(x) in Y. If a sequence $\{y_n\}$ converges to f(x) in Y, there is a sequence $\{x_n\}$ converging to x in X with each $x_n \in f^{-1}(y_n)$.

Lemma 1.4 Let $f: X \to Y$ and $g: Y \to Z$ be a boundary-finite map. Then $g \circ f: X \to Z$ is a boundary-finite map.

Proof For each $z \in Z$, $(g \circ f)^{-1}(z) = f^{-1}(g^{-1}(z)) = f^{-1}(\partial g^{-1}(z) \cup \text{Int}(g^{-1}(z)))$. Since $f^{-1}(\text{Int}(g^{-1}(z)))$ is open in X and $\partial g^{-1}(z)$ is finite, thus $\partial (g \circ f)^{-1}(z) \subset \cup \{\partial f^{-1}(y) : y \in \partial g^{-1}(z)\}$ is finite.

Lemma 1.5^[14] Let $f: M \to X$ be an 1-sequence-covering s-map from a metric space M onto a space X. If $\partial f^{-1}(x) \subset \overline{\operatorname{Int}(f^{-1}(x))}$ for each non-isolated point $x \in X$, then there exists a subspace $M_1 \subset M$ such that $g = f|_{M_1}: M_1 \to X$ is an 1-sequence-covering, countable-to-one map with each $|\partial g^{-1}(x)| \leq 1$.

Lemma 1.6^[9] (1) Each snf-countable space is preserved by 1-sequence-covering maps.

(2) Each gf-countable space is preserved by 1-sequence-covering and quotient maps.

Lemma 1.7^[12] A space X has a point-countable weak base if and only if it is a gf-countable space with a point-countable cs-network.

2 Main Results

In [13, Theorem 4.4], the following result is proved: Each sequence-covering and compact map on metric spaces is 1-sequence-covering. We will show a further result.

Theorem 2.1 Each sequence-covering and boundary compact map on metric spaces is

1-sequence-covering.

Proof Let $f: X \to Y$ be a sequence-covering, boundary compact map, here X is a metric space. For each $t_0 \in Y$, we can assume that t_0 is a limit point of some non-trivial convergent sequence $\{t_k\}$ in Y.

Since X is a metric space, it has a base $\bigcup_{n\in\mathbb{N}} \mathcal{B}_n$ satisfying the following conditions (a)–(c)(see [3]):

- (a) Each \mathcal{B}_n is a locally finite cover for X;
- (b) Each \mathcal{B}_{n+1} is a star refinement of \mathcal{B}_n ;
- (c) $\{\mathcal{B}_n\}$ is a development for X.

Let $\mathcal{P}_n = \{f(B) : B \in \mathcal{B}_n, B \cap \partial f^{-1}(t_0) \neq \emptyset \text{ and } \{t_k\} \text{ is eventually in } f(B)\} = \{P_\alpha : \alpha \in \Gamma_n\}.$

(d) \mathcal{P}_n is a non-empty finite set.

It is easy to see that \mathcal{P}_n is non-empty set for f is a sequence-covering map. \mathcal{P}_n is a finite set because \mathcal{B}_n is local finite and $\partial f^{-1}(t_0)$ is compact.

(e) For each $n \in \mathbb{N}$, there is some $f(B) \in \mathcal{P}_n$ such that f(B) is a sequential neighborhood of t_0 and some convergent sequence L in B such that f(L) = K for each sequence K converging to t_0 in f(B).

In fact, $\forall \alpha \in \Gamma_n$, P_α either is a sequential neighborhood of t_0 or not. Suppose (e) it not true, there is some convergent sequence $K_\alpha \to t_0$ such that $(K_\alpha \setminus \{t_0\}) \cap P_\alpha = \emptyset$, or $K_\alpha \subset P_\alpha$ and there is not any convergent sequence L_α in B such that $f(L_\alpha) = K_\alpha$ for some $B \in \mathcal{B}_n$ with $f(B) = P_\alpha$. Let $K_n = (\bigcup_{\alpha \in \Gamma_n} K_\alpha) \cup \{t_k : k \in \mathbb{N}\}$. K_n is a sequence converging to t_0 in Y because Γ_n is finite. Thus there is some convergent sequence L_n such that $f(L_n) = K_n$ for f is a sequence-covering map. So there is some $B \in \mathcal{B}_n$ such that L_n is eventually in B, which makes $\{t_k\}$ is eventually in f(B) and $B \cap \partial f^{-1}(t_0) \neq \emptyset$. There exists some $\alpha \in \Gamma_n$ such that $f(B) = P_\alpha$. Thus $(K_\alpha \setminus \{t_0\}) \cap P_\alpha \neq \emptyset$ and there is some convergent sequence L in B such that $f(L) = K_\alpha$. This is a contradiction.

For each $n \in \mathbb{N}$, let $U_n = \{x \in X : f(B) \text{ is not a sequential neighborhood of } t_0 \text{ in } Y \text{ for each } B \in (\mathcal{B}_n)_x\}.$

(f) If $x \in U_n$, then $\cap (\mathcal{B}_{n+1})_x \subset U_{n+1}$.

Suppose not, there is some $p \in \cap (\mathcal{B}_{n+1})_x \setminus U_{n+1}$. Thus there is some $B \in (\mathcal{B}_{n+1})_p$ such that f(B) is a sequential neighborhood of t_0 for Y by the definition of U_{n+1} . Choose $B_1 \in (\mathcal{B}_{n+1})_x$, then $p \in B \cap B_1$. Thus there is some $B_2 \in \mathcal{B}_n$ such that $B \cup B_1 \subset B_2$ by (b). Then $B_2 \in (\mathcal{B}_n)_x$ and $f(B_2)$ is a sequential neighborhood of t_0 in Y. So $x \notin U_n$, this is a contradiction.

(g) $\partial f^{-1}(t_0) \not\subset \bigcup_{n\in\mathbb{N}} U_n$.

 $U_n \subset \bigcup \{ \cap (\mathcal{B}_{n+1})_x : x \in U_n \} \subset U_{n+1} \text{ by (f). If } \partial f^{-1}(t_0) \subset \bigcup_{n \in \mathbb{N}} U_n, \text{ there is some } m \in \mathbb{N} \text{ such that } \partial f^{-1}(t_0) \subset U_m \text{ because } \partial f^{-1}(t_0) \text{ is compact and } \cap (\mathcal{B}_{n+1})_x \text{ is open in } X. \text{ Thus there is some } B \in \mathcal{B}_m \text{ such that } f(B) \text{ is a sequential neighborhood of } t_0 \text{ in } Y \text{ and } \partial f^{-1}(t_0) \cap B \neq \emptyset \text{ by (e). So } \emptyset \neq \partial f^{-1}(t_0) \cap B \subset X \setminus U_m, \text{ this is a contradiction.}$

Fix $x_0 \in \partial f^{-1}(t_0) \setminus \bigcup_{n \in \mathbb{N}} U_n$. Then

(h) If $\{y_i\}$ is a sequence converging to t_0 in Y, there is a sequence $\{x_i\}$ converging to x_0 in X with each $x_i \in f^{-1}(y_i)$.

For $n \in \mathbb{N}$, there is some $B_n \in (\mathcal{B}_n)_x$ such that $f(B_n)$ is a sequential neighborhood of t_0 for Y because $x_0 \notin U_n$. Thus $\{\operatorname{st}(x_0, \mathcal{B}_n)\}$ is a decreasing local base of x_0 for X and each $f(\operatorname{st}(x_0, \mathcal{B}_n))$ is a sequential neighborhood of t_0 for Y. There is a sequence $\{x_i\}$ converging to x_0 in X with

each $x_i \in f^{-1}(y_i)$ by Lemma 1.3.

In a word, f is an 1-sequence-covering map.

Next, some characterizations of the images of metric spaces under sequentially quotient (resp. sequence-covering), boundary compact maps are obtained.

Theorem 2.2 The following are equivalent for a space X:

- (1) X is snf-countable;
- (2) X is an image of a metric space under a sequentially quotient, at most boundary-one map;
- (3) X is a sequentially quotient, boundary compact image of a metric space.
- (4) X is a pseudo-sequence-covering, boundary compact image of a metric space.

Proof (1) \Leftrightarrow (2) was proved in [9, Corollary 2.3.17]. (2) \Rightarrow (3) is trivial. (3) \Leftrightarrow (4) is hold by Lemma 1.2.

 $(3) \Rightarrow (1)$ Suppose that $f: M \to X$ is a sequentially quotient, boundary compact map, here (M, ρ) is a metric space. Denoted the set of all isolated points of X by I. For each $x \in X \setminus I$ and each $n \in \mathbb{N}$, let $V_n(x) = \{y \in M : \rho(\partial f^{-1}(x), y) < \frac{1}{n}\}$. Thus $\{V_n(x)\}_{n \in \mathbb{N}}$ is a neighborhood base of $\partial f^{-1}(x)$ in M. Let $\mathcal{B}_x = \{f(V_n(x))\}_{n \in \mathbb{N}}$.

Put $\mathcal{B} = \bigcup \{\mathcal{B}_x : x \in X \setminus I\} \bigcup \{\{x\} : x \in I\}$. Then \mathcal{B} is an sn-network for X. Suppose not, there are $x \in X \setminus I$ and $m \in \mathbb{N}$ such that $f(V_m(x))$ is not a sequential neighborhood of x in X. There is a sequence $\{x_n\}$ in $X \setminus f(V_m(x))$ converging to x. Thus there is a sequence L converging a point of $\partial f^{-1}(x)$ in M such that f(L) is a subsequence of $\{x_n\}$ because f is sequentially quotient. Since L is eventually in $V_m(x)$, f(L) is eventually in $f(V_m(x))$, a contradiction. Hence \mathcal{B} is an sn-network of X, and X is sn f-countable.

By Theorem 2.2, Lemma 1.1 and Lemma 1.4 the following corollaries are obtained.

Corollary 2.3 (1) Each snf-countable space is preserved by a sequentially quotient, boundary-finite map.

(2) Each gf-countable space is preserved by a quotient, boundary-finite map.

Corollary 2.4^[14] The following are equivalent for a space X:

- (1) X is gf-countable;
- (2) X is an image of a metric space under a quotient, at most boundary-one map;
- (3) X is a quotient, boundary compact image of a metric space.

Theorem 2.5 The following are equivalent for a space X:

- (1) X has a point-countable sn-network;
- (2) X is an image of a metric space under an 1-sequence-covering, countable-to-one and at most boundary-one map;
- (3) X is an image of a metric space under a sequentially quotient, at most boundary-one and s-map.

Proof $(2) \Rightarrow (3)$ is trivial.

 $(3) \Rightarrow (1)$ Suppose that $f: M \to X$ is a sequentially quotient, s-map with each $|\partial f^{-1}(x)| \leq 1$, here M is a metric space. Let \mathcal{B} be a point-countable base for M and put

$$\mathcal{B}' = \{B \in \mathcal{B} : B \cap \partial f^{-1}(x) \neq \emptyset \text{ for some } x \in X\};$$

 $\mathcal{P} = \{f(B): B \in \mathcal{B}'\} \bigcup \{\{x\}: x \text{ is an isolated point of } X\}.$

Since f is an s-map, \mathcal{P} is point-countable. If x is an isolated point for X, let $\mathcal{P}_x = \{x\}$; if x is a non-isolated point, let $\mathcal{P}_x = \{f(B) : B \cap \partial f^{-1}(x) \neq \emptyset, B \in \mathcal{B}\}$. Then $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$. To prove that \mathcal{P} is an sn-network for X, it is only need to show that f(B) is a sequential neighborhood

of non-isolated point x in X for each $f(B) \in \mathcal{P}_x$. In fact, since $\{B \in \mathcal{B} : B \cap \partial f^{-1}(x) \neq \emptyset\}$ is a local base of one point set $\partial f^{-1}(x)$ in M, f(B) is a sequential neighborhood of x in X by sequential quotientness of f.

(1) \Rightarrow (2) Let $\mathcal{P} = \mathcal{F} \cup \{\{x\} : x \text{ is a non-isolated point of } X\}$, here \mathcal{F} is a point-countable sn-network for X. Denoted \mathcal{P} by $\{\mathcal{P}_{\alpha} : \alpha \in I\}$. Endow $I_i = I$ with discrete topology for each $i \in \mathbb{N}$ and put

$$M = \bigg\{\alpha = (\alpha_i) \in \prod_{i \in \mathbb{N}} I_i : \{P_{\alpha_i}\} \text{ is a network for some point } x_\alpha \text{ in } X\bigg\}.$$

Define $f: M \to X$ by $f((\alpha_i)) = x_\alpha$. Then M is a metric space and f is an s-map^[9, Lemma 1.3.8]. We prove that f is an 1-sequence-covering map. For each $x \in X$, there is a network $\{P_{\alpha_i}\} \subset \mathcal{F}$ of x in X such that each P_{α_i} is a sequential neighborhood of x in X. Put $\beta = (\alpha_i) \in \prod_{i \in \mathbb{N}} I_i$. Then $\beta \in f^{-1}(x)$. For each $n \in \mathbb{N}$, let $B_n = \{(\gamma_i) \in M : \gamma_i = \alpha_i \text{ for each } i \leqslant n\}$. Then $\{B_n\}_{n \in \mathbb{N}}$ is a decreasing local base of β in M, and $f(B_n) = \bigcap_{i \leqslant n} P_{\alpha_i}$. In fact, suppose $\gamma = (\gamma_i) \in B_n$, then $f(\gamma) \in \bigcap_{i \in \mathbb{N}} P_{\gamma_i} \subset \bigcap_{i \leqslant n} P_{\alpha_i}$. Thus $f(B_n) \subset \bigcap_{i \leqslant n} P_{\alpha_i}$. On the other hand, let $z \in \bigcap_{i \leqslant n} P_{\alpha_i}$, take a network $\{P_{\delta_i}\}$ of z in X such that $\delta_i = \alpha_i$ when $i \leqslant n$. Let $\delta = (\delta_i) \in \prod_{i \in \mathbb{N}} I_i$. Then $z = f(\delta) \in f(B_n)$, thus $\bigcap_{i \leqslant n} P_{\alpha_i} \subset f(B_n)$. Hence $f(B_n) = \bigcap_{i \leqslant n} P_{\alpha_i}$ is a sequential neighborhood of x in X. By Lemma 1.3, f is 1-sequence-covering.

For each $n \in \mathbb{N}$, let $\pi_n : \prod_{i \in \mathbb{N}} I_i \to I_n$ be the projection. For each non-isolated point $x \in X$, put $V_n = \pi_n^{-1}(\beta_n) \cap M$, here $P_{\beta_n} = \{x\}$. Then V_n is open in M and $V_n \subset f^{-1}(x)$. If $(\alpha_i) \in \partial f^{-1}(x)$, then $\bigcap_{i \in \mathbb{N}} P_{\alpha_i} = \{x\}$. For each $n \in \mathbb{N}$, define $\alpha_i(n) \in I_i$ as follows: if $i < n, \alpha_i(n) = \alpha_i$; if $i \ge n, \alpha_i(n) = \beta_i$. Then $(\alpha_i(n)) \in V_n \subset \operatorname{Int}(f^{-1}(x))$ for each $n \in \mathbb{N}$, and $\lim_{n \to \infty} (\alpha_i(n)) = (\alpha_i)$ in M. Thus $\partial f^{-1}(x) \subset \overline{\operatorname{Int}(f^{-1}(x))}$. By Lemma 1.5, there exists an $M_1 \subset M$ such that $g = f|_{M_1} : M_1 \to X$ is an 1-sequence-covering, countable-to-one map with each $|\partial f^{-1}(x)| \le 1$.

Corollary 2.6 Let $f: X \to Y$ be a sequentially quotient, countable-to-one map with each $|\partial f^{-1}(y)| \leq 1$. If X has a point-countable sn-network, so is Y.

Corollary 2.7^[14] The following are equivalent for a space X:

- (1) X has a point-countable weak base:
- (2) X is an image of a metric space under an quotient, countable-to-one and at most boundary-one map;
 - (3) X is an image of a metric space under a quotient, at most boundary-one and s-map.

Corollary 2.8 The following are equivalent for a space X:

- (1) X has a point-countable sn-network;
- (2) X is an 1-sequence-covering s-image of a metric space;
- (3) X is a sequence-covering, boundary compact s-image of a metric space;
- (4) X is an 1-sequence-covering, boundary compact s-image of a metric space.

Proof (1) \Rightarrow (4) can be obtained by Theorem 2.5. (4) \Rightarrow (3) is trivial. (3) \Rightarrow (2) can be obtained by Theorem 2.1. (1) \Leftrightarrow (2) was proved in [8, Theorem 2.3].

Corollary 2.9 The following are equivalent for a space X:

- (1) X has a point-countable weak base;
- (2) X is an 1-sequence-covering, quotient s-image of a metric space;
- (3) X is a sequence-covering, boundary compact and quotient s-image of a metric space;

(4) X is an 1-sequence-covering, boundary compact and quotient s-image of a metric space. Corollary 2.10 Spaces with a point-countable sn-network are preserved by 1-sequence-covering, countable-to-one maps.

Proof Let X be a space with a point-countable sn-network, and $f: X \to Y$ an 1-sequence-covering, countable-to-one map. There are a metric space M and an 1-sequence-covering, countable-to-one-map $g: M \to X$ such that each $|\partial g^{-1}(x)| \leq 1$ by Theorem 2.5(2). Then $h = f \circ g: M \to Y$ is an 1-sequence-covering, s-map. So Y have a point-countable sn-network by Corollary 2.8.

Corollary 2.11 Let $f: X \to Y$ be an 1-sequence-covering, countable-to-one map and Y a sequential space. If X has a point-countable weak base, so is Y.

Proof Y is a gf-countable space with a point-countable sn-network by Lemma 1.6 and Corollary 2.8. Thus Y has a point-countable weak base by Lemma 1.7.

3 Examples and Questions

Example 3.1 There is a space X which is an 1-sequence-covering, boundary compact and quotient s-image of a metric space, but it is not any sequence-covering, compact image of a metric space.

In fact, let X be the set \mathbb{R} endowed with the pointed irrational extension topology^[17, Example 69]. Then X is a space with a countable base, which is not a metacompact space. Thus X is an 1-sequence-covering, boundary compact and quotient s-image of a metric space by Corollary 2.9. But X is not any sequence-covering compact image of a metric space, otherwise it is a pseudo-open compact image of a metric space by Lemma 1.1, then it is a metacompact space, a contradiction.

Example 3.2 There exist a metric space M and a quotient and finite-to-one map $f: M \to X$ satisfying the following conditions:

- (1) X has not a point-countable cs-network;
- (2) X is not a sequence-covering s-image of a metric space;
- (3) f is not sequence-covering.

The space X is given in [12, Remark 14(2)], a space without any point-countable cs-network, which is the image of a metric space M under a quotient and finite-to-one map f. Since each space which is a sequence-covering s-image of a metric space has a point-countable cs-network^[11, Theorem 1.1], X is not a sequence-covering s-image of a metric space. Thus f is not sequence-covering. The example shows that the condition $|\partial f^{-1}(x)| \leq 1$ can not be replaced by boundary-finite in Theorem 2.5(3), Corollary 2.6.

Example 3.3 A space with a point-countable weak base is not preserved by an 1-sequence-covering and one-to-one map.

Let Y be the Stone-Čech compactification $\beta\mathbb{N}$. A space X is the set $\beta\mathbb{N}$ endowed with discrete topology. Then X is a metric space, and any convergent sequence in Y is trivial^[3, Corollary 3.6.15]. Put $f = \mathrm{id}_X : X \to Y$ by the identical map. Thus f is an 1-sequence-covering and one-to-one map, and Y has not a point-countable weak base.

Some questions are posed in the final.

Question 3.4 Are spaces with a point-countable *sn*-network preserved by a sequential quotient, at most boundary-one and *s*-map?

Question 3.5 Are spaces with a point-countable *sn*-network preserved by 1-sequence-covering, *s*-map?

Question 3.6 Let $f: X \to Y$ be a sequence-covering, boundary compact map. Is f an 1-sequence-covering map if X is a space with a point-countable base or a developable space?

Question 3.7 Let X be an snf-countable space which is a sequentially quotient, s-image of a metric space. Is X a sequentially quotient, boundary compact s-image of a metric space?

Question 3.8 Is a quotient and compact image of a metric space a quotient and countable-to-one image of a metric space?

Acknowledgement The authors would like to thank Chuna Liu for sending us the preprint paper [14].

References

- [1] Arhangel'skii, A.V., Mappings and spaces, Russian Math. Surveys, 1966, 21: 115-162.
- [2] Boone, J.R., Siwiec, F., Sequentially quotient mappings, Czech. Math. J., 1976, 26: 174-182.
- [3] Engelking, R., General Topology (revised and completed edition): Heldermann Verlag, Berlin, 1989.
- [4] Franklin, S.P., Spaces in which sequences suffice, Fund. Math., 1965, 57: 107-115.
- [5] Gruenhage, G., Generalized metric spaces, In: K. Kunen, J. E. Vaughan, eds., Handbook of Set-theoretic Topology, Elsevier Science Publishers B V, Amsterdam, 1984, 423-501.
- [6] Gruenhage, G., Michael, E. and Tanaka, Y., Spaces determined by point-countable covers, Pacific J. Math., 1984, 113: 303-332.
- [7] Guthrie, J.A., A characterization of №-spaces, General Topology Appl., 1971, 1: 105-110.
- [8] Lin S., On sequence-covering s-maps (in Chinese), Advances in Mathematics (China), 1996, 25: 548-551.
- [9] Lin S., Point-countable Covers and Sequence-covering Mappings(in Chinese): Science Press, Beijing, 2002.
- [10] Lin S., A note on sequence-covering mappings, Acta Math. Hungar., 2005, 107: 193-197.
- [11] Lin S., Liu C., On spaces with point-countable cs-networks, Topology Appl., 1996, 74: 51-60.
- [12] Lin S., Tnanka, Y., Point-countable k-networks, closed maps, and related results, Topology Appl., 1994, 59: 79-86
- [13] Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl., 2001, 109: 301-314.
- [14] Liu C., A note on point-countable weak bases, Questions Answers General Topology, 2007, 25: 57-61.
- [15] Siwiec, F., Sequence-covering and countably bi-quotient maps, General Topology Appl., 1971, 1: 143-154.
- [16] Siwiec, F., On defining a space by a weak base, Pacific J. Math., 1974, 52: 233-245.
- [17] Steen, L.A., Seebach Jr, J.A., Counterexamples in Topology (second edition): Springer-Verlag, New York, 1978.

度量空间的序列覆盖边界紧映象

林福财1, 林 寿 1,2

(1. 漳州师范学院数学系, 漳州, 福建, 363000; 2. 宁德师专数学系, 宁德, 福建, 352100)

摘要: 本文主要讨论了度量空间的序列覆盖边界紧映象. 用序列商、序列覆盖或 1- 序列覆盖的纤维边界紧或有限来刻画具有 sn 网或弱基的空间. 主要结果如下: (1) 度量空间上的序列覆盖边界紧映射是 1- 序列覆盖映射; (2) 空间 X 是度量空间的序列商边界紧映象当且仅当 X 是 snf- 第一可数空间; (3) 空间 X 是度量空间的序列覆盖边界紧 S 映象当且仅当 X 有点可数 sn- 网.

关键词: 序列商映射; 序列覆盖映射; sn-网; 弱基