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Abstract: In this paper the semi-quotient mappings are studied, and the concepts of wks-
mappings and wkes-mappings are introduced. It is shown that a space with a point-countable
k-network if and only if it is a wks-image of a metric space, and a space with a compact-countable
k-network if and only if it is a wkcs-image of a metric space, which answers a question posed
by Chuan Liu and Y. Tanaka in 1996.
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0 Introuction

Spaces determined by point-countable covers are some important classes of generalized met-
ric spaces!?. A space has a point-countable base if and only if it is a continuous open s-image of
a metric space. Every base for a space is a k-network, and every k-network is a wecs*-network.
It is a natural question how to characterize the spaces with a point-countable k-network or
spaces with a point-countable wcs*-network by a nice image of a metric space. In 1989, N.
V. Velichko!'?! introduced a semi-quotient ws-mapping, and proved that a sequential space has
a point-countable k-network if and only if it is a semi-quotient ws-image of a metric space. In this
paper we first analyze some properties of semi-quotient, ws-mappings, introduce wk-mappings
and wc-mappings, and characterize spaces with a point-countable k-network and spaces with
a point-countable wcs*-network, respectively, which improve N. V. Velichko’s results. On the
other hand, a space has a point-countable base if and ouly if it has a compact-countable base, but
there is a space with a point-countable k-network which has no compact-countable k-network!®!.
A question posed by Chuan Liu and Y. Tanakal® is still open as follows: Characterize Fréchet
spaces with a compact-countable k-network by a nice image of a metric space. In this paper
wkes-mappings are defined and the question above is affirmatively answered.

In this paper all spaces are Hausdorff, and all mappings are onto. Readers may refer to [1]
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for unstated definitions.

1 Semi-quotient Mappings and Semi-pseudo-open Mappings

Definition 1/'° Suppose that a mapping f: X — Y, and X, is a subspace of X. f is
called continuous about Xj if for each z € X and any neighborhood V of f(z) in Y there is a
neighborhood W of z in X such that f(W N Xo) cV.

Denote fo = fix,: Xo =Y.

Lemma 1 Suppose that a mapping f : X — Y and Xy € X. The following are equivalent:

(1) f is continuous about Xp.

(2) If a net {za}d4ep in Xo converges to a point = in X, then a net {f(z4)}aep converges
to f(z)inY.

(3) If T is a subset of Y, then f;/(T) ¢ f~X(T).

Proof (1) = (2). Suppose that a mapping f is continuous about Xy, and a net {z4}4ep in
Xo converges to a point z in X. Let U be any neighborhood of f(z) in Y, there is a neighborhood
W of z in X such that f(W N Xp) C U, then there is a dg € D such that 24 € W N X for each
d > dy, thus f(zq) € U, hence the net {f(z4)}4ep converges to f(z) in Y.

(2) = (3). Suppose that z € f;!(T), there is a net {za}aep in f!(T) converging to z in
X, then {zq4}aep C Xo and {f(z4)}dep C T, so a net {f(za)}aep converges to f(z) €T in Y,
therefore f3}(T) C f~X(T).

(3) = (1). Suppose that f;(T) € f~Y(T) for each T C Y. For each z € X and an
open neighborhood V of f(z) in Y, put W = X \ f7 (Y \ V), since z ¢ f~}(Y \ V) and
HY\ V) C f~YY'\ V), then W is an open neighborhood of z in X and WN f; (Y \ V) = 0.
Thisis WNXoN f~HY \V) =0, thus f(W N X,) C V. So f is continuous about Xg.

By Lemma 1, the restriction fIYo : Xo — Y is continuous = f is continuous about Xy =
the restriction fo = fx, : Xo = Y is continuous.

Lemma 2 Suppose that a mapping f: X — Y is continuous about Xy. If ¥ is a regular
space, then the restriction f|7° is continuous.

Proof For each z € X and any neighborhood V of f(z) in Y, there is a neighborhood U
of f(z) in Y such that f(z) € U C U C V by the regularity of Y. Since f is continuous about
X, there is an open neighborhood W of z in X with f(WNX,) Cc U. If z€ WN Xy, there is a
net {zq}4ep in Xo converging to z in X, we can assume that each 4 € W, then f(zq4) € U and
the net {f(z4)}aep converges to f(z) € U by Lemma 1, thus /(W N X,) C U C V. Hence fixz,
is continuous.

Put X =[0,1],Y = [0,1). X, Y are endowed with the usual Euclidean topology of subspaces
in real line R. Define a mapping f: X — Y by f(0) =0 and f(z) =1 -z if z € (0,1}, then the
restriction fo,1 : (0,1] — Y is continuous, but f is not continuous about (0, 1] by Lemma 2.

Definition 319 A mapping f : (X, Xo) — Y is called a semi-quotient ws-mapping if
Xo C X and the following are satisfied:

(1) The restriction fo = f|x, : Xo — Y is an s-mapping, i. e., f5° !(y) is a separable subspace
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of Xo foreachy €Y.

(2) f is continuous about Xp.

(3) A subset T of Y is closed if and only if f;*(T) c f~(T).

By Lemma 1, the condition (3) = (2) in Definition 3. The semi-quotient ws-mappings are
a composite concept. f : (X,X) — Y is called a ws-mapping if it satisfies the conditions (1)
and (2); f: (X,Xo) — Y is called a semi-quotient mapping if it satisfies the condition (3) in
Definition 3.

Lemma 4 Suppose that a mapping f : (X, Xo) — Y is continuous about Xp and the
restriction fx, : Xo — Y is a quotient mapping, then f is a semi-quotient mapping.

Proof Put fo = fix,. If T is a subset of Y and f5(T) C f~(T), then clx,(f3 '(T)) =
f TN Xo C f~HT)N Xo = f3 1(T), thus fo'(T) is closed in Xo, hence T is closed in Y. By
Lemma 1, f is a semi-quotient mapping.

By Lemma 1, if f : (X, Xo) — Y is semi-quotient, then f is continuous about Xjp. It is well
known that a mapping f : X — Y is pseudo-open if and only if f(f=1(T)) =T for each subset
T of Y. Inspired by it, the following concept is defined.

Definition 5 Let f: X — Y be a mapping and X, a subspace of X. f: (X, Xq) — Y is
called a semi-pseudo-open mapping if f(f;*(T)) =T for each subset T of Y. .

Lemma 6 Suppose that a mapping f : (X, Xo) — Y is continuous about Xy and the
restriction f|x, : Xo — Y is a pseudo-open mapping, then f is a semi-pseudo-open mapping.

Proof Let T beasubset of Y. fy*(T) C f~'(T) by Lemma 1, thus f(f;*(T)) c T. Since
fixo : Xo — Y is a pseudo-open mapping, fo(clx, (fo (7)) =T, thus T C f(f3 }(T) N Xo) C
F(f371(T)). Hence f is semi-pseudo-open.

Lemma 7 Every semi-pseudo-open mapping is semi-quotient.

Proof Let f:(X,Xo) — Y be a semi-pseudo-open mapping. If T is closed subset of Y,
then f(f;X(T)) = T, thus £ X(T) C f~Y(T). If a subset T of Y with f5 1(T) C f~}(T), then
T = f(fy'(T)) C T, thus T is closed in Y. Hence f is semi-quotient.

2 Some Compact-covering Mappings

To characterize spaces with a point-countable k-network and spaces with a point-countable
wes™-network as images of metric spaces under special mappings, we modify semi-quotient map-
pings as follows.

Definition 8 Suppose that a mapping f : X — Y is continuous about Xj.

(1) f: (X,X9) — Y is called a wk-mapping if K is a compact subset of Y and T is a
sequence in K, there is a sequence S in X such that S has an accumulation in X and f(S) is a
subsequence of T'.

(2) f: (X,Xo) — Y is called a we-mapping if T is a convergent sequence in Y, there is a
sequence S in X such that S has an accumulation in X and f(S) is a subsequence of T.

(3) f: (X,X0) — Y is called a wks-mapping (wecs-mapping) if it is a wk-mapping (we-
mapping) and a ws-mapping.
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Lemma 9 Every continuous closed mapping is a semi-quotient wks-mapping.
Proof Suppose that f: X — Y is a continuous closed mapping. For each y € Y take an
zy € f~y), and put Xo = {z, : y € Y}. Obviously, f : (X, Xy) — Y is continuous about Xj

and is a ws-mapping. If T is a subset of Y, and f; }(T) C f~X(T), then T = f(Xo N f~1(T)) =
F(fS'(T)) € T, thus T is closed in Y. Therefore f is a semi-quotient mapping. For a compact
subset K of a space Y and an infinite sequence T in K, if the sequence f; Y(T) of X, has no
accumulation in X, then f;*(T) is a closed discrete subset of X, thus T is a closed discrete
subset of K, a contradiction. So the sequence f; '(T) of X, has an accumulation in X. Thus
every continuous closed mapping is a wks-mapping.

wk-mappings, wc-mappings are closely related to compact-covering mappings. Suppose that
f: X —Y is a continuous mapping. f is called a compact-covering mapping!? if K is a compact
subset of Y, there is a compact subset L of X with f(L) = K;; f is called a sequence-covering
mapping[2] if T is a convergent sequence including the limit point in Y, there is a compact subset
Lin X with f(L)=T.

It is easy to check that

compact-covering mappings ——» wk-mappings «+—— continuous closed mappings

sequence-covering mappings —— wc-mappings.

A sequence-covering mapping may not be a wk-mapping. For example, let Y be the Stone-
Cech compactification SN, X be the set ¥ endowed with a discrete topology, and f : X — Y be
an identical mapping. Since Y has no non-trivial convergent sequence’), f is a sequence-covering
mapping, but f is not a wk-mapping. On the other hand, a continuous closed mapping may not
be a sequence-covering mapping. For example, let us consider a well-known Frolik’s construction
as follows. Put D = {D C N : D is infinite}. For any D € D choose zp € SN\ N such that
zp € cl(D). Then take X = NU{zp : D € D} C ON. Finally define f : X — {0} U {2 : n € N}
by f(X\N) = {0} and each f(n) = & for each n € N. Then f is a continuous closed mapping of
a regular space X in which every compact subset is finite onto the convergent sequence. Thus f
is not a sequence-covering mapping.

Lemma 10 Let X be a Fréchet space. Then

(1) f: (X,Xo) — Y is a semi-quotient mapping if and only if f is a wk-mapping(wec-
mapping) and Y is a sequential space.

(2) f:(X,X,) — Y is a semi-pseudo-open mapping if and only if f is a wk-mapping(wc-
mapping) and Y is a Fréchet space.

Proof (1) Suppose that f: (X, Xo) — Y is a semi-quotient mapping. Let K be a compact
subset of Y and T be a sequence in K, then T has an accumulation z in K, we can assume that
z ¢ T, thus T is not closed in Y, there is z € fg '(T)\ f~Y(T). Since X is a Fréchet space, there
is a sequence S in f; '(T) such that the sequence S converges to z. If there is a y € T such that
f7H(y) contains a subsequence of S, then z € m C f~Yy), a contradiction with f(z) ¢ T,

hence we can consider that f(S) is a subsequence of T. Therefore f is a wk-mapping.
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Let F be a non-closed subset of Y. Then there is z € f3 1(F)\ f~*(F), and there is a
sequence {z,,} in f; *(F) which converges to z. Thus each f(z,) € F and the sequence {f(z,)}
converges to f(z) ¢ F by Lemma 1. Let T = {f(z,) : n € N} U {f(z)}, then T is a convergent
sequence in Y, and T'N F is not closed in Y. Therefore Y is a sequential space.

Conversely, let f: (X, Xg) — Y be a we-mapping and Y a sequential space. If F is a non-
closed subset of Y, there is a convergent sequence T including the limit point such that TN F
is not closed in Y, then the set T'N F' is infinite, hence there is a sequence S in Xg such that S

has an accumulation z in X and f(S) is a subsequence of TN F. Then z € f;'(F) and f(z)

is an accumulation of f(S), so f(z) € F, i. e., z € f3 1(F)\ f~}(F), hence fy'(F) ¢ f~'(F).
Therefore f : (X, Xo) — Y is a semi-quotient mapping.

(2) Let f: (X,Xo) — Y be a semi-pseudo-open mapping. f is a wk-mapping by Lemma

7and (1). fy € ACY, thereisaz € f~(y) N fo*(A) by f(fy'(4)) = A, then there is
a sequence {z,} in f§ 1(A) converging to z, thus the sequence {f(zn)} in A converging to y.

Hence Y is a Fréchet space.

Conversely, let f : (X, Xo) — Y be a wc-mapping and Y a Fréchet space. For each subset
Fof Y, f(f;'(F)) C F by the continuity of f about Xo. On the other hand, let y € F, we
need to show that y € f(f; ' (F)). There is a sequence T in F converging to y, thus there a
sequence S in X, converging to z in X and f(S) is a subsequence of T, then z € f; Y(F) and
f(z) is an accumulation of f(S), hence y = f(z) € f(fy *(F)). Therefore F C f(f;(F)). So
f:(X,Xo) — Y is a semi-pseudo-open mapping.

Question 11 Are sequential spaces preserved by semi-quotient mappings?

3 Spaces With a Point-countable wcs*-network

Suppose that P is a family of subsets of a space X. P is called a k-network for X (see [2])
if for each compact subset K of X and any neighborhood U of K in X, there is a finite subset
F of P with K C |JF C U. P is called a wes*-network for X (see [7]) if T is a sequence of X
which converges to € X, and U is any neighborhood of z in X, there are a subsequence 7" of
TandaPePwithT'cPcU.

Obviously, every k-network for a space X is a wes*-network.

Lemma 12[77 Let P be a point-countable family of subsets of a space X. Then P is a
k-network for X if and only if P is a wes*-network for X and each compact subset of X is
sequentially compact(or metrizable).

Thus a k-space having a point-countable k-network is a sequential space.

Lemma 13 Suppose that B is a point-countable base for a space X.

(1) If f: (X,Xo) — Y is a wks-mapping, then f (B)x,) is a point-countable k-network for
Y.

(2) If f: (X,Xo) — Y is a wes-mapping, then f (B)x,) is a point-countable wecs*-network
for Y.

Proof Denote P = f(Bx,). Since B|x, is a point-countable base for the subspace Xy,
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and fo = f|x, is an s-mapping, then P is point-countable in Y.

(1) Suppose that f : (X,Xo) — Y is a wk-mapping. Let K be a compact subset of Y,
and U be any neighborhood of K in Y, we shall show that there is a finite 7 C P such that
K CUF CU. If not, for each y € K, denote {P€ P :y € P Cc U} = {P,(y) : i € N}.
There is a sequence {yn} of K such that y, & U{Pi(yk) : i,k < n} for each n € N. Put
T = {yn : n € N}. Since f is a wk-mapping, there is a sequence {zx} of Xp such that the
sequence {zx} has an accumulation in X and {f(zx)} is a subsequence of {y,}. Since X is a
Fréchet space, we can assume that the sequence {zx} converges to a point z in X and f(z) ¢ T
By Lemma 1, f(z) € T C K, thus U is a neighborhood of f(x) in Y. And since f is continuous
about Xg, there is a B € B such that z € B and f(BN Xy) C U. There is a yn, € f(B N Xo)
because the sequence {zx} converges to z and {f(zx)} is a subsequence of {y,}, thus there is
an igp € N such that f(BN Xg) = Piy(Yny), 50 Yn & Pig(Yn,) for each n > max{ig,no}. Hence
the sequence {z;} has at most finite terms which do not belong to ;™ ({yn : n < max{io,no}}),
there is an n < max{éo,no} such that {x)} has infinite terms which is belonging to f;'(yn),
$0z € f5 (yn) C f~ (yn) by Lemma 1, thus f(z) = yn € T, a contradiction. Hence P is a
point-countable k-network for Y.

(2) Suppose that f : (X, Xp) — Y is a we-mapping. Let {y} be a sequence in ¥ which
converges to y and U be any neighborhood of y in Y, there is a sequence {z;} in X such that
the sequence {z;} has an accumulation in X and {f(z;)} is a subsequence of {yn}. We can
assume that the sequence {z;} converges to a point = in X. Thus f(z) =y € U by Lemma 1,
there is a B € B such that z € B and f(B N Xp) C U. Suppose that each z; € B, then each
f(z:) € f(BN Xo) C U. So P is a point-countable wes*-network.

A mapping f: X — Y is called weakly cJontinuous[sl if f~1(V) c [f~}(V)]° for each open
set VinY. f: X — Y is weakly continuous if and only if for each z € X and any neighborhood
V of f(z) in Y, there is a neighborhood W of z in X with f(W) C V.

By the proof of Lemma 2, if f is continuous about Xj, then the restriction flfo is weakly
continuous. The converse proposition is not true. For example, take X = [0, 2] endowed with the
usual Euclidean topology, and Y = [0, 1] endowed with a well-known Smirnov’s deleted sequence
topology as follows: Put S = {% :n € N}, and V is open in Y if and only if there are a Euclidean
open set G in [0, 1] and a B C S such that V = G\ B. Then Y is a non-regular T>-space. Define
amapping f: X - Y by f(z) =z ifz € [0,1],f(z) =2—=z if z € (1,2]. Thus f is weakly
continuous, but f is not continuous about (0, 2].

The example above shows also the regularity of the space Y in Lemma 2 is essential. In
fact, let Xo = X \ ({0} U {1/n: n € N,n > 1}), then f is continuous about Xo, Xo = X, but f
is not continuous.

A family B of subsets of a space X is called a m-network of a point z in X if V is any
neighborhood of z in X, there is a B € B such that BC V.

Lemma 14 (1) Spaces with a point-countable wcs*-network are a weakly continuous wes-

image of a metric space.
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(2) Spaces with a point-countable k-network are a weakly continuous wks-image of a metric
space.

Proof (1) Suppose that U = {U, : @ € A} is a point-countable wcs*-network for a space
X. Put M = {a = (o) € A : a family {U,, }ien has the finite intersection property and there
is an 7, € X such that {Uy,, }ien is a m-network of z, in X}. M is endowed with the subspace
topology of the countably product space A“ of a discrete space A, then M is a metric space.
Define a mapping f : M — X by f(a) = z, for each @ € M. Since X is a Tp-space, f is
well-defined. Let My = {a = (a;) € M : f(a) € Uy, for each i € N}. We shall show that
f: (M, Mp) — X is a weakly continuous wes-mapping.

(a) Obviously, the restriction fo = fia, : Mo — X is an onto and s-mapping because U is a

point-countable network for X.

(b) f is weakly continuous in M and continuous about My. Let a = (e;) € M and V be
any neighborhood of f(«a) in X, then U,, C V for some k € N. Let W = {(8;) € M : By = o }.
Then W is an open neighborhood of a in M, f(W N My) C V and f(W) C V. In fact, if
B = (B:) € WN Moy, then B = ax and f(8) € [);enUp: C Ua, C V. For each v = (;) € W and
any neighborhood O of f(v) in X, U,, C O for some i € N, s0 ONV > U,,NUq, = U, NU,, # 0,
hence f(y) € V.

(c) f is a we-mapping. If T = {z,} is a sequence in ¥ which converges to a point z ¢ 7.
Put Ty = {z, : n > k} for each k € N. Let & = {P : a finite subset P of i is a minimal
cover of Ty for some k € N}. By the point-countability of &, ® is countable, and denote
® = {P; : i € N}. Since {T}}xen has the finite intersection property, there is an ultrafilter F
in the space X containing {Ti}ren. For each i € N, UP; € F, there is an a; € A such that
Ua; € P;NF because F is an ultrafilter in the space X. Then the family {Ug, }:cn has the finite
intersection property. Suppose that V is any neighborhood of z in X, then {z} UT} C V for
some k € N, so {2} UT, C JP; C V for some j € N. If not, for each y € {z} U T}, denote
{UeU:yeUcCV}={Ufy):ie N}. Then there is a sequence {yn} in {z} U T} such that
yn & U{Ui(y;) : i,5 < n} for each n € N. Since the sequence {yn} converges to z, there is a
U € U such that U C V and U contains infinite terms of the sequence {y,}, a contradiction. So
Ua, CV, then {Uy,, }ien is a m-network of z in X. Let a = (e;) € AY, then @ € M, f(a) = z and
a & f~Y(T). For each n € N, put B, = {(B:) € M : B; = a; for each i < n}, then {B, : n € N}
is a local base of o in M, and f(Bnr N My) = [);<,, Us, for each n € N. Since F is a filter in the
space X, thus TN (Ni<nUs,) # 0, i. e, TN f(Bn N Mp) # 0, then B, N 1 (T) # 0, take a point
Zn € Ba N f3 }(T). The sequence {z,} in My converges to o in M, so there is a subsequence S
of {25} such that f(S) is a subsequence of T.

In a word, f is a weakly continuous wes-mapping.

(2) Suppose that U = {U, : a@ € A} is a point-countablé k-network for a space X. It
needs only to show that the mapping f : (M, My) — X defined above is a wk-mapping. For a
compact subset K of X and any sequence T = {z,} in K, we can assume that the sequence
{zn} converges to a point z € K \ {z,, : n € N} by Lemma 12. By the proof of (¢) above, there
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is a sequence S in My such that S is convergent in M and f(S) is a subsequence of T". Hence f
is a wk-mapping.

We can show that Mj is a dense subset of M in the proof of Lemma 14. In fact, for a non-
empty open subset P.in M, let (o;) € P, there is an n € N such that B, = {(B;)) e M : 8; = o
for each i < n} C P. Take an z € Ni<nU,,, there is a (v;) € A¥ such that {U,, }ien is a network
of z in X and 4; = o for each ¢ < n, then () € PN My. Hence PN My # 0, so My is a dense
subset of M. Thus the weak continuity of f in Lemma 14 can be obtained by the continuity
about M of f.

By Lemmas 13, 14 and 10, we have the following theorem and corollaries.

Theorem 15 (1) A space has a point-countable k-network if and only if it is a (weakly
continuous) wks-image of a metric space.

(2) A space has a point-countable wes*-network if and only if it is a (weakly continuous)
wes-image of a metric space.

Corollary 16['% A sequential space has a point-countable k-network if and only if it is a
(weakly continuous) semi-quotient ws-image of a metric space.

If all spaces are regular, then the weakly continuous mapping can be enhanced a continuous
mapping in Theorem 15 and Corollary 18.

Corollary 17(®!2 Every sequential space with a point-countable k-network is preserved
by a continuous closed mapping.

Proof Suppose that f: X — Y is a continuous closed mapping, here X is a sequential
space with a point-countable k-network. Y is a sequential space because sequential spaces are
preserved by quotient mappings!®!. By Corollary 16, there is a metric space M and a weakly
continuous semi-quotient ws-mapping g : (M, My) — X. For each y € Y, take an z, € f~1(y).
Put My = g5'({zy vy €Y}, h=fog: M - Y,and hy = hin,- Since My C My,
h:(M,M;) - Y is a ws-mapping and continuous about M;. We shall show that h is a semi-
quotient mapping. Suppose that T is a non-closed subset of Y, thus there is a sequence {yn} in
T such that the sequence {yn} convergestoy ¢ T in Y. For each n € N, put =, = z,,, and let
S = {zn : n € N}. Since f is closed, S is not closed in X, and since X is a sequential space, the
sequence {z,} has a convergent subsequence. We can assume that the sequence {z,} converges
to a point z in X, then f(x) = y. Since g is semi-quotient and S is not closed in X, there is an
a€ M\g‘l(S). If g(a) # , there is a neighborhood V of g(a) in X such that VNS =0,
then there is a neighborhood W of a in M such that g(W) C V because g is weakly continuous,
thus W g=*(S) = 0, hence o ¢ ;;0_1_(53, a contradiction. Thus g(a) =z and h{a) =y ¢ T. For
each open neighborhood O of ¢ in M, ONh;H(T) D 0Ng™ (S) N My =0NMeNng~1(S) # 9,
thus a € h; '(T) \ h}(T), hence hy*(T) ¢ h~*(T). Therefore h is semi-quotient. By Corollary
16, Y is a sequential space with a point-countable k-network.

Since a space with a point-countable k-network (wcs*-network) is not preserved by a con-
tinuous closed mapping['!l, a space with a point-countable k-network (wcs*-network) is not
preserved by a wks-mapping {(wes-mapping).
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Example 18 The inverse proposition in Lemma 4 is not true. Let Y be the fan space S, ,
then Y is an image of a metric space X under a continuous closed mapping f (see [6]), there is a
subspace Xp of X such that f : (X, Xp) — Y is a semi-quotient ws-mapping by Lemma 9. Since
S,,, is not any quotient s-image of a metric spacel®, so fix, 18 not quotient.

Example 19 A continuous open mapping may not be a wes-mapping. Let Y be the space
w1 of countable order numbers with usual order topology. Since Y is a first countable space,
there are a metric space X and a continuous open mapping f : X — Y (see {1]). Since Y has

not any point-countable wes*-network by Lemma 12, f is not a wes-mapping by Lemma 13.

4 Spaces With a Compact-countable k-network

A cs-mapping was introduced by Qu and Gaol® to characterize spaces with a compact-
countable k-network. Let f : X — Y be a mapping. f is called a cs-mapping if f~1(C) is
separable for each compact subset C of Y. cs-images of metric spaces are discussed by some
authors in [4, 5, 9].

Definition 20 A mapping f: X — Y is called a wkcs-mapping if f : (X, Xo) - Y is a
wk-mapping and the restriction fo = fix, : Xo — Y is a cs-mapping.

Lemma 21 Suppose that B is a point-countable base for a space X. If f : (X, Xo) = Y
is a wkcs-mapping, then f(B|x,) is a compact-countable k-network for Y.

Proof Denote P = f(B|x,). Since B|x, is a point-countable base for the subspace X,
and fo = f|x, is a cs-mapping, then P is compact-countable in Y. By Lemma 13, P is a
compact-countable k-network for Y.

Lemma 22 Spaces with a compact-countable k-network are a weakly continuous wkes-
image of a metric space.

Proof Suppose that U = {U, : a € A} is a compact-countable k-network for a space X.
It needs only to show that the mapping f : (M, My) — X defined in the proof of Lemma 14(1)
is a wkcs-mapping. f is a wk-mapping by the proof of Lemma 14(2). Obviously, the restriction
fo = fim, : Mo — X is an onto and cs-mapping because I is a compact-countable network for
X.

In a word, f is a weakly continuous wkcs-mapping.

By Lemmas 21, 22 and 10, we have the following theorem.

Theorem 23 (1) A space has a compact-countable k-network if and only if it is a (weakly
continuous) wkcs-image of a metric space.

(2) X is a k-space with a compact-countable k-network if and only if there are a metric space
M and a (weakly continuous) semi-quotient mapping f : (M, Mp) — X such that fo: My —» X
is a cs-mapping.

(3) X is a Fréchet space with a compact-countable k-network if and only if there are a
metric space M and a (weakly continuous) semi-quotient mapping f : (M, Mp) — X such that
fo: My — X is a cs-mapping.

If all spaces are regular, then the weakly continuous mapping can be enhanced a continuous
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mapping in the above theorem.

Question 24 The following questions posed by Liu and Tanakal® are still open.

(1) Does every closed image of a space with a o-locally countable k-network has a compact-
countable k-network?

(2) Does every closed image of a k-space (or paracompact space) with a compact-countable
k-network has a compact-countable k-network?
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