Semi-quotient Mappings and Spaces With Compact-countable k-networks

LIN Shou^{1,2,*}, LI Jinjin^{1,**},

(1. Dept. of Math., Zhangzhou Normal University, Zhangzhou, Fujian, 363000, P. R. China; 2. Institute of Math., Ningde Teachers College, Ningde, Fujian, 352100, P. R. China)

Abstract: In this paper the semi-quotient mappings are studied, and the concepts of wks-mappings and wkcs-mappings are introduced. It is shown that a space with a point-countable k-network if and only if it is a wks-image of a metric space, and a space with a compact-countable k-network if and only if it is a wkcs-image of a metric space, which answers a question posed by Chuan Liu and Y. Tanaka in 1996.

Key words: semi-quotient mappings; semi-pseudo-open mappings; ws-mappings; wks-mappings; wkcs-mappings; k-networks; wcs*-networks

MR(2000) Subject Classification: 54B15; 54D55; 54E40; 54C10 / CLC number: O189.1

Document code: A **Article ID:** 1000-0917(2009)04-0417-10

0 Introuction

Spaces determined by point-countable covers are some important classes of generalized metric spaces^[2]. A space has a point-countable base if and only if it is a continuous open s-image of a metric space. Every base for a space is a k-network, and every k-network is a wcs*-network. It is a natural question how to characterize the spaces with a point-countable k-network or spaces with a point-countable wcs*-network by a nice image of a metric space. In 1989, N. V. Velichko^[10] introduced a semi-quotient ws-mapping, and proved that a sequential space has a point-countable k-network if and only if it is a semi-quotient ws-mappings, introduce wk-mappings and wc-mappings, and characterize spaces with a point-countable k-network and spaces with a point-countable wcs*-network, respectively, which improve N. V. Velichko's results. On the other hand, a space has a point-countable base if and only if it has a compact-countable base, but there is a space with a point-countable k-network which has no compact-countable k-network^[8]. A question posed by Chuan Liu and Y. Tanaka^[8] is still open as follows: Characterize Fréchet spaces with a compact-countable k-network by a nice image of a metric space. In this paper wkcs-mappings are defined and the question above is affirmatively answered.

In this paper all spaces are Hausdorff, and all mappings are onto. Readers may refer to [1]

Received date: 2007-06-26. Revised: 2007-12-13.

Foundation item: This work is supported by the NSFC(No. 10571151) and (No. 10671173).

E-mail: * linshou@public.ndptt.fj.cn; ** jinjinli@fjzs.edu.cn

for unstated definitions.

1 Semi-quotient Mappings and Semi-pseudo-open Mappings

Definition 1^[10] Suppose that a mapping $f: X \to Y$, and X_0 is a subspace of X. f is called continuous about X_0 if for each $x \in X$ and any neighborhood V of f(x) in Y there is a neighborhood W of x in X such that $f(W \cap X_0) \subset V$.

Denote $f_0 = f_{|X_0} : X_0 \to Y$.

Lemma 1 Suppose that a mapping $f: X \to Y$ and $X_0 \subset X$. The following are equivalent:

- (1) f is continuous about X_0 .
- (2) If a net $\{x_d\}_{d\in D}$ in X_0 converges to a point x in X, then a net $\{f(x_d)\}_{d\in D}$ converges to f(x) in Y.
 - (3) If T is a subset of Y, then $\overline{f_0^{-1}(T)} \subset f^{-1}(\overline{T})$.
- **Proof** (1) \Rightarrow (2). Suppose that a mapping f is continuous about X_0 , and a net $\{x_d\}_{d\in D}$ in X_0 converges to a point x in X. Let U be any neighborhood of f(x) in Y, there is a neighborhood W of x in X such that $f(W \cap X_0) \subset U$, then there is a $d_0 \in D$ such that $x_d \in W \cap X_0$ for each $d \geq d_0$, thus $f(x_d) \in U$, hence the net $\{f(x_d)\}_{d\in D}$ converges to f(x) in Y.
- $(2) \Rightarrow (3)$. Suppose that $x \in \overline{f_0^{-1}(T)}$, there is a net $\{x_d\}_{d \in D}$ in $f_0^{-1}(T)$ converging to x in X, then $\{x_d\}_{d \in D} \subset X_0$ and $\{f(x_d)\}_{d \in D} \subset T$, so a net $\{f(x_d)\}_{d \in D}$ converges to $f(x) \in \overline{T}$ in Y, therefore $\overline{f_0^{-1}(T)} \subset f^{-1}(\overline{T})$.
- $(3) \Rightarrow (1)$. Suppose that $\overline{f_0^{-1}(T)} \subset f^{-1}(\overline{T})$ for each $T \subset Y$. For each $x \in X$ and an open neighborhood V of f(x) in Y, put $W = X \setminus \overline{f_0^{-1}(Y \setminus V)}$, since $x \notin f^{-1}(Y \setminus V)$ and $\overline{f_0^{-1}(Y \setminus V)} \subset f^{-1}(Y \setminus V)$, then W is an open neighborhood of x in X and $W \cap f_0^{-1}(Y \setminus V) = \emptyset$. This is $W \cap X_0 \cap f^{-1}(Y \setminus V) = \emptyset$, thus $f(W \cap X_0) \subset V$. So f is continuous about X_0 .

By Lemma 1, the restriction $f_{|\overline{X}_0}: \overline{X}_0 \to Y$ is continuous $\Longrightarrow f$ is continuous about $X_0 \Longrightarrow$ the restriction $f_0 = f_{|X_0}: X_0 \to Y$ is continuous.

Lemma 2 Suppose that a mapping $f: X \to Y$ is continuous about X_0 . If Y is a regular space, then the restriction $f_{|\overline{X}_0|}$ is continuous.

Proof For each $x \in \overline{X}_0$ and any neighborhood V of f(x) in Y, there is a neighborhood U of f(x) in Y such that $f(x) \in U \subset \overline{U} \subset V$ by the regularity of Y. Since f is continuous about X_0 , there is an open neighborhood W of x in X with $f(W \cap X_0) \subset U$. If $z \in W \cap \overline{X}_0$, there is a net $\{x_d\}_{d \in D}$ in X_0 converging to z in X, we can assume that each $x_d \in W$, then $f(x_d) \in U$ and the net $\{f(x_d)\}_{d \in D}$ converges to $f(z) \in \overline{U}$ by Lemma 1, thus $f(W \cap \overline{X}_0) \subset \overline{U} \subset V$. Hence $f_{|\overline{X}_0|}$ is continuous.

Put X = [0, 1], Y = [0, 1). X, Y are endowed with the usual Euclidean topology of subspaces in real line \mathbb{R} . Define a mapping $f: X \to Y$ by f(0) = 0 and f(x) = 1 - x if $x \in (0, 1]$, then the restriction $f_{[0,1]}: (0,1] \to Y$ is continuous, but f is not continuous about (0,1] by Lemma 2.

Definition 3^[10] A mapping $f:(X,X_0)\to Y$ is called a semi-quotient ws-mapping if $X_0\subset X$ and the following are satisfied:

(1) The restriction $f_0 = f_{|X_0}: X_0 \to Y$ is an s-mapping, i. e., $f_0^{-1}(y)$ is a separable subspace

of X_0 for each $y \in Y$.

- (2) f is continuous about X_0 .
- (3) A subset T of Y is closed if and only if $\overline{f_0^{-1}(T)} \subset f^{-1}(T)$.

By Lemma 1, the condition $(3) \Rightarrow (2)$ in Definition 3. The semi-quotient ws-mappings are a composite concept. $f:(X,X_0) \to Y$ is called a ws-mapping if it satisfies the conditions (1) and (2); $f:(X,X_0) \to Y$ is called a semi-quotient mapping if it satisfies the condition (3) in Definition 3.

Lemma 4 Suppose that a mapping $f:(X,X_0)\to Y$ is continuous about X_0 and the restriction $f_{|X_0}:X_0\to Y$ is a quotient mapping, then f is a semi-quotient mapping.

Proof Put $f_0 = f_{|X_0}$. If T is a subset of Y and $\overline{f_0^{-1}(T)} \subset f^{-1}(T)$, then $\operatorname{cl}_{X_0}(f_0^{-1}(T)) = \overline{f_0^{-1}(T)} \cap X_0 \subset f^{-1}(T) \cap X_0 = f_0^{-1}(T)$, thus $f_0^{-1}(T)$ is closed in X_0 , hence T is closed in Y. By Lemma 1, f is a semi-quotient mapping.

By Lemma 1, if $f:(X,X_0)\to Y$ is semi-quotient, then f is continuous about X_0 . It is well known that a mapping $f:X\to Y$ is pseudo-open if and only if $f(\overline{f^{-1}(T)})=\overline{T}$ for each subset T of Y. Inspired by it, the following concept is defined.

Definition 5 Let $f: X \to Y$ be a mapping and X_0 a subspace of X. $f: (X, X_0) \to Y$ is called a semi-pseudo-open mapping if $f(\overline{f_0^{-1}(T)}) = \overline{T}$ for each subset T of Y.

Lemma 6 Suppose that a mapping $f:(X,X_0)\to Y$ is continuous about X_0 and the restriction $f_{|X_0}:X_0\to Y$ is a pseudo-open mapping, then f is a semi-pseudo-open mapping.

Proof Let T be a subset of Y. $\overline{f_0^{-1}(T)} \subset f^{-1}(\overline{T})$ by Lemma 1, thus $f(\overline{f_0^{-1}(T)}) \subset \overline{T}$. Since $f_{|X_0}: X_0 \to Y$ is a pseudo-open mapping, $f_0(\operatorname{cl}_{X_0}(f_0^{-1}(T))) = \overline{T}$, thus $\overline{T} \subset f(\overline{f_0^{-1}(T)} \cap X_0) \subset f(\overline{f_0^{-1}(T)})$. Hence f is semi-pseudo-open.

Lemma 7 Every semi-pseudo-open mapping is semi-quotient.

Proof Let $f:(X,X_0)\to Y$ be a semi-pseudo-open mapping. If T is closed subset of Y, then $f(\overline{f_0^{-1}(T)})=T$, thus $\overline{f_0^{-1}(T)}\subset f^{-1}(T)$. If a subset T of Y with $\overline{f_0^{-1}(T)}\subset f^{-1}(T)$, then $\overline{T}=f(\overline{f_0^{-1}(T)})\subset T$, thus T is closed in Y. Hence f is semi-quotient.

2 Some Compact-covering Mappings

To characterize spaces with a point-countable k-network and spaces with a point-countable wcs^* -network as images of metric spaces under special mappings, we modify semi-quotient mappings as follows.

Definition 8 Suppose that a mapping $f: X \to Y$ is continuous about X_0 .

- (1) $f:(X,X_0)\to Y$ is called a wk-mapping if K is a compact subset of Y and T is a sequence in K, there is a sequence S in X_0 such that S has an accumulation in X and f(S) is a subsequence of T.
- (2) $f:(X,X_0)\to Y$ is called a wc-mapping if T is a convergent sequence in Y, there is a sequence S in X_0 such that S has an accumulation in X and f(S) is a subsequence of T.
- (3) $f:(X,X_0)\to Y$ is called a wks-mapping (wcs-mapping) if it is a wk-mapping (wcs-mapping) and a ws-mapping.

Lemma 9 Every continuous closed mapping is a semi-quotient wks-mapping.

Proof Suppose that $f: X \to Y$ is a continuous closed mapping. For each $y \in Y$ take an $x_y \in f^{-1}(y)$, and put $X_0 = \{x_y : y \in Y\}$. Obviously, $f: (X, X_0) \to Y$ is continuous about X_0 and is a ws-mapping. If T is a subset of Y, and $\overline{f_0^{-1}(T)} \subset f^{-1}(T)$, then $\overline{T} = \overline{f(X_0 \cap f^{-1}(T))} = f(\overline{f_0^{-1}(T)}) \subset T$, thus T is closed in Y. Therefore f is a semi-quotient mapping. For a compact subset K of a space Y and an infinite sequence T in K, if the sequence $f_0^{-1}(T)$ of X_0 has no accumulation in X, then $f_0^{-1}(T)$ is a closed discrete subset of X, thus T is a closed discrete subset of K, a contradiction. So the sequence $f_0^{-1}(T)$ of X_0 has an accumulation in X. Thus every continuous closed mapping is a wks-mapping.

wk-mappings, wc-mappings are closely related to compact-covering mappings. Suppose that $f: X \to Y$ is a continuous mapping. f is called a compact-covering mapping^[2] if K is a compact subset of Y, there is a compact subset L of X with f(L) = K; f is called a sequence-covering mapping^[2] if T is a convergent sequence including the limit point in Y, there is a compact subset L in X with f(L) = T.

It is easy to check that compact-covering mappings \longrightarrow wk-mappings \longrightarrow continuous closed mappings sequence-covering mappings \longrightarrow wc-mappings.

A sequence-covering mapping may not be a wk-mapping. For example, let Y be the Stone-Čech compactification $\beta\mathbb{N}$, X be the set Y endowed with a discrete topology, and $f:X\to Y$ be an identical mapping. Since Y has no non-trivial convergent sequence^[1], f is a sequence-covering mapping, but f is not a wk-mapping. On the other hand, a continuous closed mapping may not be a sequence-covering mapping. For example, let us consider a well-known Frolik's construction as follows. Put $\mathcal{D} = \{D \subset \mathbb{N} : D \text{ is infinite}\}$. For any $D \in \mathcal{D}$ choose $x_D \in \beta\mathbb{N} \setminus \mathbb{N}$ such that $x_D \in \mathrm{cl}(D)$. Then take $X = \mathbb{N} \cup \{x_D : D \in \mathcal{D}\} \subset \beta\mathbb{N}$. Finally define $f: X \to \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ by $f(X \setminus \mathbb{N}) = \{0\}$ and each $f(n) = \frac{1}{n}$ for each $n \in \mathbb{N}$. Then f is a continuous closed mapping of a regular space X in which every compact subset is finite onto the convergent sequence. Thus f is not a sequence-covering mapping.

Lemma 10 Let X be a Fréchet space. Then

- (1) $f:(X,X_0)\to Y$ is a semi-quotient mapping if and only if f is a wk-mapping (wc-mapping) and Y is a sequential space.
- (2) $f:(X,X_0)\to Y$ is a semi-pseudo-open mapping if and only if f is a wk-mapping (wc-mapping) and Y is a Fréchet space.

Proof (1) Suppose that $f:(X,X_0)\to Y$ is a semi-quotient mapping. Let K be a compact subset of Y and T be a sequence in K, then T has an accumulation z in K, we can assume that $z\not\in T$, thus T is not closed in Y, there is $x\in \overline{f_0^{-1}(T)}\setminus f^{-1}(T)$. Since X is a Fréchet space, there is a sequence S in $f_0^{-1}(T)$ such that the sequence S converges to x. If there is a $y\in T$ such that $f_0^{-1}(y)$ contains a subsequence of S, then $x\in \overline{f_0^{-1}(y)}\subset f^{-1}(y)$, a contradiction with $f(x)\not\in T$, hence we can consider that f(S) is a subsequence of T. Therefore f is a wk-mapping.

Let F be a non-closed subset of Y. Then there is $x \in \overline{f_0^{-1}(F)} \setminus f^{-1}(F)$, and there is a sequence $\{x_n\}$ in $f_0^{-1}(F)$ which converges to x. Thus each $f(x_n) \in F$ and the sequence $\{f(x_n)\}$ converges to $f(x) \notin F$ by Lemma 1. Let $T = \{f(x_n) : n \in \mathbb{N}\} \cup \{f(x)\}$, then T is a convergent sequence in Y, and $T \cap F$ is not closed in Y. Therefore Y is a sequential space.

Conversely, let $f:(X,X_0)\to Y$ be a wc-mapping and Y a sequential space. If F is a non-closed subset of Y, there is a convergent sequence T including the limit point such that $T\cap F$ is not closed in Y, then the set $T\cap F$ is infinite, hence there is a sequence S in X_0 such that S has an accumulation x in X and f(S) is a subsequence of $T\cap F$. Then $x\in \overline{f_0^{-1}(F)}$ and f(x) is an accumulation of f(S), so $f(x)\not\in F$, i. e., $x\in \overline{f_0^{-1}(F)}\setminus f^{-1}(F)$, hence $\overline{f_0^{-1}(F)}\not\subset f^{-1}(F)$. Therefore $f:(X,X_0)\to Y$ is a semi-quotient mapping.

(2) Let $f:(X,X_0) \to Y$ be a semi-pseudo-open mapping. f is a wk-mapping by Lemma 7 and (1). If $y \in \overline{A} \subset Y$, there is a $x \in f^{-1}(y) \cap \overline{f_0^{-1}(A)}$ by $f(\overline{f_0^{-1}(A)}) = \overline{A}$, then there is a sequence $\{x_n\}$ in $f_0^{-1}(A)$ converging to x, thus the sequence $\{f(x_n)\}$ in A converging to y. Hence Y is a Fréchet space.

Conversely, let $f:(X,X_0)\to Y$ be a wc-mapping and Y a Fréchet space. For each subset F of Y, $f(\overline{f_0^{-1}(F)})\subset \overline{F}$ by the continuity of f about X_0 . On the other hand, let $y\in \overline{F}$, we need to show that $y\in f(\overline{f_0^{-1}(F)})$. There is a sequence T in F converging to y, thus there a sequence S in X_0 converging to x in X and f(S) is a subsequence of T, then $x\in \overline{f_0^{-1}(F)}$ and f(x) is an accumulation of f(S), hence $y=f(x)\in f(\overline{f_0^{-1}(F)})$. Therefore $\overline{F}\subset f(\overline{f_0^{-1}(F)})$. So $f:(X,X_0)\to Y$ is a semi-pseudo-open mapping.

Question 11 Are sequential spaces preserved by semi-quotient mappings?

3 Spaces With a Point-countable wcs*-network

Suppose that \mathcal{P} is a family of subsets of a space X. \mathcal{P} is called a k-network for X (see [2]) if for each compact subset K of X and any neighborhood U of K in X, there is a finite subset \mathcal{F} of \mathcal{P} with $K \subset \bigcup \mathcal{F} \subset U$. \mathcal{P} is called a wcs^* -network for X (see [7]) if T is a sequence of X which converges to $x \in X$, and U is any neighborhood of x in X, there are a subsequence T' of T and a $P \in \mathcal{P}$ with $T' \subset P \subset U$.

Obviously, every k-network for a space X is a wcs^* -network.

Lemma 12^[7] Let \mathcal{P} be a point-countable family of subsets of a space X. Then \mathcal{P} is a k-network for X if and only if \mathcal{P} is a wcs^* -network for X and each compact subset of X is sequentially compact(or metrizable).

Thus a k-space having a point-countable k-network is a sequential space.

Lemma 13 Suppose that \mathcal{B} is a point-countable base for a space X.

- (1) If $f:(X,X_0)\to Y$ is a wks-mapping, then $f(\mathcal{B}_{|X_0})$ is a point-countable k-network for Y.
- (2) If $f:(X,X_0)\to Y$ is a wcs-mapping, then $f(\mathcal{B}_{|X_0})$ is a point-countable wcs*-network for Y.

Proof Denote $\mathcal{P} = f(\mathcal{B}_{|X_0})$. Since $\mathcal{B}_{|X_0}$ is a point-countable base for the subspace X_0 ,

and $f_0 = f_{|X_0}$ is an s-mapping, then \mathcal{P} is point-countable in Y.

- (1) Suppose that $f:(X,X_0)\to Y$ is a wk-mapping. Let K be a compact subset of Y, and U be any neighborhood of K in Y, we shall show that there is a finite $\mathcal{F}\subset\mathcal{P}$ such that $K\subset \bigcup\mathcal{F}\subset U$. If not, for each $y\in K$, denote $\{P\in\mathcal{P}:y\in P\subset U\}=\{P_i(y):i\in\mathbb{N}\}$. There is a sequence $\{y_n\}$ of K such that $y_n\not\in \bigcup\{P_i(y_k):i,k< n\}$ for each $n\in\mathbb{N}$. Put $T=\{y_n:n\in\mathbb{N}\}$. Since f is a wk-mapping, there is a sequence $\{x_k\}$ of X_0 such that the sequence $\{x_k\}$ has an accumulation in X and $\{f(x_k)\}$ is a subsequence of $\{y_n\}$. Since X is a Fréchet space, we can assume that the sequence $\{x_k\}$ converges to a point x in X and $f(x)\not\in T$. By Lemma 1, $f(x)\in\overline{T}\subset K$, thus U is a neighborhood of f(x) in Y. And since f is continuous about X_0 , there is a $B\in\mathcal{B}$ such that $x\in B$ and $f(B\cap X_0)\subset U$. There is a $y_{n_0}\in f(B\cap X_0)$ because the sequence $\{x_k\}$ converges to x and $\{f(x_k)\}$ is a subsequence of $\{y_n\}$, thus there is an $i_0\in\mathbb{N}$ such that $f(B\cap X_0)=P_{i_0}(y_{n_0})$, so $y_n\not\in P_{i_0}(y_{n_0})$ for each $n>\max\{i_0,n_0\}$. Hence the sequence $\{x_k\}$ has at most finite terms which do not belong to $f_0^{-1}(\{y_n:n\le\max\{i_0,n_0\}\})$, there is an $n\le\max\{i_0,n_0\}$ such that $\{x_k\}$ has infinite terms which is belonging to $f_0^{-1}(y_n)$, so $x\in\overline{f_0^{-1}(y_n)}\subset f^{-1}(y_n)$ by Lemma 1, thus $f(x)=y_n\in T$, a contradiction. Hence \mathcal{P} is a point-countable k-network for Y.
- (2) Suppose that $f:(X,X_0)\to Y$ is a wc-mapping. Let $\{y_n\}$ be a sequence in Y which converges to y and U be any neighborhood of y in Y, there is a sequence $\{x_i\}$ in X_0 such that the sequence $\{x_i\}$ has an accumulation in X and $\{f(x_i)\}$ is a subsequence of $\{y_n\}$. We can assume that the sequence $\{x_i\}$ converges to a point x in X. Thus $f(x)=y\in U$ by Lemma 1, there is a $B\in \mathcal{B}$ such that $x\in B$ and $f(B\cap X_0)\subset U$. Suppose that each $x_i\in B$, then each $f(x_i)\in f(B\cap X_0)\subset U$. So \mathcal{P} is a point-countable wcs^* -network.

A mapping $f: X \to Y$ is called weakly continuous^[3] if $f^{-1}(V) \subset [f^{-1}(\overline{V})]^{\circ}$ for each open set V in Y. $f: X \to Y$ is weakly continuous if and only if for each $x \in X$ and any neighborhood V of f(x) in Y, there is a neighborhood W of x in X with $f(W) \subset \overline{V}$.

By the proof of Lemma 2, if f is continuous about X_0 , then the restriction $f_{|\overline{X}_0}$ is weakly continuous. The converse proposition is not true. For example, take X = [0, 2] endowed with the usual Euclidean topology, and Y = [0, 1] endowed with a well-known Smirnov's deleted sequence topology as follows: Put $S = \{\frac{1}{n} : n \in \mathbb{N}\}$, and V is open in Y if and only if there are a Euclidean open set G in [0, 1] and a $B \subset S$ such that $V = G \setminus B$. Then Y is a non-regular T_2 -space. Define a mapping $f: X \to Y$ by f(x) = x if $x \in [0, 1], f(x) = 2 - x$ if $x \in (1, 2]$. Thus f is weakly continuous, but f is not continuous about (0, 2].

The example above shows also the regularity of the space Y in Lemma 2 is essential. In fact, let $X_0 = X \setminus (\{0\} \cup \{1/n : n \in \mathbb{N}, n > 1\})$, then f is continuous about $X_0, \overline{X}_0 = X$, but f is not continuous.

A family $\mathcal B$ of subsets of a space X is called a π -network of a point x in X if V is any neighborhood of x in X, there is a $B \in \mathcal B$ such that $B \subset V$.

Lemma 14 (1) Spaces with a point-countable wcs^* -network are a weakly continuous wcs-image of a metric space.

- (2) Spaces with a point-countable k-network are a weakly continuous wks-image of a metric space.
- **Proof** (1) Suppose that $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ is a point-countable wcs^* -network for a space X. Put $M = \{\alpha = (\alpha_i) \in A^{\omega} : \text{a family } \{U_{\alpha_i}\}_{i \in \mathbb{N}}$ has the finite intersection property and there is an $x_{\alpha} \in X$ such that $\{U_{\alpha_i}\}_{i \in \mathbb{N}}$ is a π -network of x_{α} in $X\}$. M is endowed with the subspace topology of the countably product space A^{ω} of a discrete space A, then M is a metric space. Define a mapping $f: M \to X$ by $f(\alpha) = x_{\alpha}$ for each $\alpha \in M$. Since X is a T_2 -space, f is well-defined. Let $M_0 = \{\alpha = (\alpha_i) \in M : f(\alpha) \in U_{\alpha_i} \text{ for each } i \in \mathbb{N}\}$. We shall show that $f: (M, M_0) \to X$ is a weakly continuous wcs-mapping.
- (a) Obviously, the restriction $f_0 = f_{|M_0} : M_0 \to X$ is an onto and s-mapping because \mathcal{U} is a point-countable network for X.
- (b) f is weakly continuous in M and continuous about M_0 . Let $\alpha = (\alpha_i) \in M$ and V be any neighborhood of $f(\alpha)$ in X, then $U_{\alpha_k} \subset V$ for some $k \in \mathbb{N}$. Let $W = \{(\beta_i) \in M : \beta_k = \alpha_k\}$. Then W is an open neighborhood of α in M, $f(W \cap M_0) \subset V$ and $f(W) \subset \overline{V}$. In fact, if $\beta = (\beta_i) \in W \cap M_0$, then $\beta_k = \alpha_k$ and $f(\beta) \in \bigcap_{i \in \mathbb{N}} U_{\beta_i} \subset U_{\alpha_k} \subset V$. For each $\gamma = (\gamma_i) \in W$ and any neighborhood O of $f(\gamma)$ in X, $U_{\gamma_i} \subset O$ for some $i \in \mathbb{N}$, so $O \cap V \supset U_{\gamma_i} \cap U_{\alpha_k} = U_{\gamma_i} \cap U_{\gamma_k} \neq \emptyset$, hence $f(\gamma) \in \overline{V}$.
- (c) f is a wc-mapping. If $T = \{x_n\}$ is a sequence in Y which converges to a point $x \notin T$. Put $T_k = \{x_n : n \geq k\}$ for each $k \in \mathbb{N}$. Let $\Phi = \{\mathcal{P} : \text{a finite subset } \mathcal{P} \text{ of } \mathcal{U} \text{ is a minimal }$ cover of T_k for some $k \in \mathbb{N}$. By the point-countability of \mathcal{U} , Φ is countable, and denote $\Phi = \{\mathcal{P}_i : i \in \mathbb{N}\}$. Since $\{T_k\}_{k \in \mathbb{N}}$ has the finite intersection property, there is an ultrafilter \mathcal{F} in the space X containing $\{T_k\}_{k\in\mathbb{N}}$. For each $i\in\mathbb{N}, \cup\mathcal{P}_i\in\mathcal{F}$, there is an $\alpha_i\in A$ such that $U_{\alpha_i} \in \mathcal{P}_i \cap \mathcal{F}$ because \mathcal{F} is an ultrafilter in the space X. Then the family $\{U_{\alpha_i}\}_{i \in \mathbb{N}}$ has the finite intersection property. Suppose that V is any neighborhood of x in X, then $\{x\} \cup T_k \subset V$ for some $k \in \mathbb{N}$, so $\{x\} \cup T_k \subset \bigcup \mathcal{P}_j \subset V$ for some $j \in \mathbb{N}$. If not, for each $y \in \{x\} \cup T_k$, denote $\{U \in \mathcal{U} : y \in U \subset V\} = \{U_i(y) : i \in \mathbb{N}\}.$ Then there is a sequence $\{y_n\}$ in $\{x\} \cup T_k$ such that $y_n \notin \bigcup \{U_i(y_j): i,j < n\}$ for each $n \in \mathbb{N}$. Since the sequence $\{y_n\}$ converges to x, there is a $U \in \mathcal{U}$ such that $U \subset V$ and U contains infinite terms of the sequence $\{y_n\}$, a contradiction. So $U_{\alpha_i} \subset V$, then $\{U_{\alpha_i}\}_{i \in \mathbb{N}}$ is a π -network of x in X. Let $\alpha = (\alpha_i) \in A^{\omega}$, then $\alpha \in M$, $f(\alpha) = x$ and $\alpha \notin f^{-1}(T)$. For each $n \in \mathbb{N}$, put $B_n = \{(\beta_i) \in M : \beta_i = \alpha_i \text{ for each } i \leq n\}$, then $\{B_n : n \in \mathbb{N}\}$ is a local base of α in M, and $f(B_n \cap M_0) = \bigcap_{i < n} U_{\alpha_i}$ for each $n \in \mathbb{N}$. Since \mathcal{F} is a filter in the space X, thus $T \cap (\bigcap_{i \leq n} U_{\alpha_i}) \neq \emptyset$, i. e., $T \cap f(B_n \cap M_0) \neq \emptyset$, then $B_n \cap f_0^{-1}(T) \neq \emptyset$, take a point $z_n \in B_n \cap f_0^{-1}(T)$. The sequence $\{z_n\}$ in M_0 converges to α in M, so there is a subsequence S of $\{z_n\}$ such that f(S) is a subsequence of T.

In a word, f is a weakly continuous wcs-mapping.

(2) Suppose that $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ is a point-countable k-network for α space X. It needs only to show that the mapping $f: (M, M_0) \to X$ defined above is a wk-mapping. For a compact subset K of X and any sequence $T = \{x_n\}$ in K, we can assume that the sequence $\{x_n\}$ converges to a point $x \in K \setminus \{x_n : n \in \mathbb{N}\}$ by Lemma 12. By the proof of (c) above, there

is a sequence S in M_0 such that S is convergent in M and f(S) is a subsequence of T. Hence f is a wk-mapping.

We can show that M_0 is a dense subset of M in the proof of Lemma 14. In fact, for a nonempty open subset P in M, let $(\alpha_i) \in P$, there is an $n \in \mathbb{N}$ such that $B_n = \{(\beta_i) \in M : \beta_i = \alpha_i \}$ for each $i \leq n \} \subset P$. Take an $x \in \cap_{i \leq n} U_{\alpha_i}$, there is a $(\gamma_i) \in A^{\omega}$ such that $\{U_{\gamma_i}\}_{i \in \mathbb{N}}$ is a network of x in X and $\gamma_i = \alpha_i$ for each $i \leq n$, then $(\gamma_i) \in P \cap M_0$. Hence $P \cap M_0 \neq \emptyset$, so M_0 is a dense subset of M. Thus the weak continuity of f in Lemma 14 can be obtained by the continuity about M_0 of f.

By Lemmas 13, 14 and 10, we have the following theorem and corollaries.

Theorem 15 (1) A space has a point-countable k-network if and only if it is a (weakly continuous) wks-image of a metric space.

(2) A space has a point-countable wcs^* -network if and only if it is a (weakly continuous) wcs-image of a metric space.

Corollary $16^{[10]}$ A sequential space has a point-countable k-network if and only if it is a (weakly continuous) semi-quotient ws-image of a metric space.

If all spaces are regular, then the weakly continuous mapping can be enhanced a continuous mapping in Theorem 15 and Corollary 16.

Corollary $17^{[8,12]}$ Every sequential space with a point-countable k-network is preserved by a continuous closed mapping.

Proof Suppose that $f: X \to Y$ is a continuous closed mapping, here X is a sequential space with a point-countable k-network. Y is a sequential space because sequential spaces are preserved by quotient mappings^[6]. By Corollary 16, there is a metric space M and a weakly continuous semi-quotient ws-mapping $g:(M,M_0)\to X$. For each $y\in Y$, take an $x_y\in f^{-1}(y)$. Put $M_1 = g_0^{-1}(\{x_y : y \in Y\}), h = f \circ g : M \to Y$, and $h_1 = h_{|M_1}$. Since $M_1 \subset M_0$, $h:(M,M_1)\to Y$ is a ws-mapping and continuous about M_1 . We shall show that h is a semiquotient mapping. Suppose that T is a non-closed subset of Y, thus there is a sequence $\{y_n\}$ in T such that the sequence $\{y_n\}$ converges to $y \notin T$ in Y. For each $n \in \mathbb{N}$, put $x_n = x_{y_n}$, and let $S = \{x_n : n \in \mathbb{N}\}$. Since f is closed, S is not closed in X, and since X is a sequential space, the sequence $\{x_n\}$ has a convergent subsequence. We can assume that the sequence $\{x_n\}$ converges to a point x in X, then f(x) = y. Since g is semi-quotient and S is not closed in X, there is an $\alpha \in \overline{g_0^{-1}(S)} \setminus g^{-1}(S)$. If $g(\alpha) \neq x$, there is a neighborhood V of $g(\alpha)$ in X such that $\overline{V} \cap \overline{S} = \emptyset$, then there is a neighborhood W of α in M such that $g(W) \subset \overline{V}$ because g is weakly continuous, thus $W \cap g^{-1}(S) = \emptyset$, hence $\alpha \notin \overline{g_0^{-1}(S)}$, a contradiction. Thus $g(\alpha) = x$ and $h(\alpha) = y \notin T$. For each open neighborhood O of α in M, $O \cap h_1^{-1}(T) \supset O \cap g^{-1}(S) \cap M_1 = O \cap M_0 \cap g^{-1}(S) \neq \emptyset$, thus $\alpha \in h_1^{-1}(T) \setminus h^{-1}(T)$, hence $h_1^{-1}(T) \not\subset h^{-1}(T)$. Therefore h is semi-quotient. By Corollary 16, Y is a sequential space with a point-countable k-network.

Since a space with a point-countable k-network (wcs^* -network) is not preserved by a continuous closed mapping^[11], a space with a point-countable k-network (wcs^* -network) is not preserved by a wks-mapping (wcs-mapping).

Example 18 The inverse proposition in Lemma 4 is not true. Let Y be the fan space S_{ω_1} , then Y is an image of a metric space X under a continuous closed mapping f (see [6]), there is a subspace X_0 of X such that $f:(X,X_0)\to Y$ is a semi-quotient ws-mapping by Lemma 9. Since S_{ω_1} is not any quotient s-image of a metric space^[6], so $f_{|X_0}$ is not quotient.

Example 19 A continuous open mapping may not be a *wcs*-mapping. Let Y be the space ω_1 of countable order numbers with usual order topology. Since Y is a first countable space, there are a metric space X and a continuous open mapping $f: X \to Y$ (see [1]). Since Y has not any point-countable wcs^* -network by Lemma 12, f is not a wcs-mapping by Lemma 13.

4 Spaces With a Compact-countable k-network

A cs-mapping was introduced by Qu and Gao^[9] to characterize spaces with a compact-countable k-network. Let $f: X \to Y$ be a mapping. f is called a cs-mapping if $f^{-1}(C)$ is separable for each compact subset C of Y. cs-images of metric spaces are discussed by some authors in [4, 5, 9].

Definition 20 A mapping $f: X \to Y$ is called a wkcs-mapping if $f: (X, X_0) \to Y$ is a wk-mapping and the restriction $f_0 = f_{|X_0|} : X_0 \to Y$ is a cs-mapping.

Lemma 21 Suppose that \mathcal{B} is a point-countable base for a space X. If $f:(X,X_0)\to Y$ is a wkcs-mapping, then $f(\mathcal{B}_{|X_0})$ is a compact-countable k-network for Y.

Proof Denote $\mathcal{P} = f(\mathcal{B}_{|X_0})$. Since $\mathcal{B}_{|X_0}$ is a point-countable base for the subspace X_0 , and $f_0 = f_{|X_0}$ is a cs-mapping, then \mathcal{P} is compact-countable in Y. By Lemma 13, \mathcal{P} is a compact-countable k-network for Y.

Lemma 22 Spaces with a compact-countable k-network are a weakly continuous wkcs-image of a metric space.

Proof Suppose that $\mathcal{U}=\{U_\alpha:\alpha\in A\}$ is a compact-countable k-network for a space X. It needs only to show that the mapping $f:(M,M_0)\to X$ defined in the proof of Lemma 14(1) is a wkcs-mapping. f is a wk-mapping by the proof of Lemma 14(2). Obviously, the restriction $f_0=f_{|M_0}:M_0\to X$ is an onto and cs-mapping because $\mathcal U$ is a compact-countable network for X.

In a word, f is a weakly continuous wkcs-mapping.

By Lemmas 21, 22 and 10, we have the following theorem.

Theorem 23 (1) A space has a compact-countable k-network if and only if it is a (weakly continuous) wkcs-image of a metric space.

- (2) X is a k-space with a compact-countable k-network if and only if there are a metric space M and a (weakly continuous) semi-quotient mapping $f:(M,M_0)\to X$ such that $f_0:M_0\to X$ is a cs-mapping.
- (3) X is a Fréchet space with a compact-countable k-network if and only if there are a metric space M and a (weakly continuous) semi-quotient mapping $f:(M,M_0)\to X$ such that $f_0:M_0\to X$ is a cs-mapping.

If all spaces are regular, then the weakly continuous mapping can be enhanced a continuous

mapping in the above theorem.

Question 24 The following questions posed by Liu and Tanaka^[8] are still open.

- (1) Does every closed image of a space with a σ -locally countable k-network has a compact-countable k-network?
- (2) Does every closed image of a k-space (or paracompact space) with a compact-countable k-network has a compact-countable k-network?

References

- [1] Engelking, R., General Topology, Berlin: Heldermann, 1989.
- [2] Gruenhage, G., Michael, E. and Tanaka, Y., Spaces determined by point-countable covers, Pacific J. Math., 1984, 113: 303-332.
- [3] Levine, N., A decomposition of continuity in topological spaces, Amer. Math. Monthly, 1961, 68: 44-46.
- [4] Li Jinjin, Jiang Shouli, Compact-covering cs-images of metric spaces, *Indian J. Pure Appl. Math.*, 2001, 32(2): 285-288.
- [5] Li Jinjin, Lin Shou, Sequence-covering cs-images of metric spaces, Sci. Math., 2000, 3(3): 399-404.
- [6] Lin Shou, Generalized Metric Spaces and Mappings, Second Edition, Beijing: Science Press, 2007(in Chinese).
- [7] Lin Shou, Tanaka, Y., Point-countable k-networks, closed maps, and related results, Topology Appl., 1994, 59: 79-86.
- [8] Liu Chuan, Tanaka, Y., Spaces with certain compact-countable k-networks, and questions, Questions and Answers in General Topology, 1996, 14: 15-38.
- [9] Qu Zhibin, Gao Zhimin, Spaces with compact-countable k-networks, Math. Japonica, 1999, 49(2): 199-205.
- [10] Velichko, N.V., Ultrasequential spaces, Mat. Zametki, 1989, 45(2): 15-21(in Russian) (=Math. Notes, 1989, 45: 99-103).
- [11] Sakai, M., Remarks on spaces with a special type of k-networks, Tsukuba J. Math., 1997, 21: 443-448.
- [12] Shibakov, A., On spaces with point-countable k-networks and their mappings, Serdica-Bulgaricae Math. Pub., 1994, 20(1): 48-55.

半商映射与具有紧可数 k 网的空间

林寿 1,2、 李进金 1

(1. 漳州师范学院数学系, 漳州, 福建, 363000; 2. 宁德师范高等专科学校数学所, 宁德, 福建, 352100)

摘要: 本文研究半商映射,引进了 wks 映射和 wkcs 映射的概念,证明了空间具有点可数 k 网当且仅当它是度量空间的 wks 映象,空间具有紧可数 k 网当且仅当它是度量空间的 wkcs 映象,这回答了刘川和田中祥雄 1996 年提出的问题.

关键词: 半商映射; 半伪开映射; ws 映射; wks 映射; k 网; wcs* 网