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ABSTRACT. In this paper, the authors define a space with a
uniform base at non-isolated points, give some characteriza-
tions of images of metric spaces by boundary-compact maps,
and study certain relationships among spaces with special
base properties. The main results are the following: (1) X
is an open, boundary-compact image of a metric space if and
only if X has a uniform base at non-isolated points; (2) each
discretizable space of a space with a uniform base is an open
compact and at most boundary-one image of a space with a
uniform base; (3) X has a point-countable base if and only if
X is a bi-quotient, at most boundary-one and countable-to-
one image of a metric space.

1. INTRODUCTION

Topologists obtained many interesting characterizations of the
images of metric spaces by some kind of maps. A. V. Arhangel’skii
[3] proved that a space X is an open compact image of a metric
space if and only if X has a uniform base. Recently, Chuan Liu [16]
gave a new characterization of spaces with a point-countable base
by pseudo-open and at most boundary-one images of metric spaces.
How could an open or pseudo-open and boundary-compact image
of a metric space be characterized? On the other hand, a study of
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spaces with a sharp base or a weakly uniform base [5], [6] shows
that some properties of a non-isolated point set of a topological
space will help us discuss a whole construction of a space. In this
paper, the authors analyze some base properties on non-isolated
points of a space, introduce a space having a uniform base at non-
isolated points and describe it as an image of a metric space by open
boundary-compact maps. Some relationships among the images of
metric spaces under open boundary-compact maps, pseudo-open
boundary-compact maps, open compact maps, and spaces with a
point-countable base are discussed.

By R, N, denote the set of real numbers and positive integers,
respectively. For a space X, let

I(X) = {z : x is an isolated point of X'}

and
I(X)={{z} 2z € I(X)}.

In this paper, all spaces are T> and all maps are continuous and
onto. Recall some basic definitions.

Let X be a topological space. X is called a metacompact (para-
compact, metalindeldf , resp.) space if every open cover of X has a
point-finite (locally finite, point-countable, resp.) open refinement.
X is said to have a Gg-diagonal if the diagonal A = {(z,z) : x € X}
isa Gg-set in X x X. X is called a perfect space if every open subset
of X is an Fj,-set in X.

Definition 1.1. Let P be a base of a space X.

(1) P is a uniform base [1] (uniform base at non-isolated points,
resp.) for X, if for each (non-isolated, resp.) point x € X
and each countably infinite subset P’ of (P),, P’ is a neigh-
borhood base at z.

(2) P is a point-regular base [1] ( point-regular base at non-
isolated points, resp.) for X if for each (non-isolated, resp.)
point z € X and x € U with U open in X, {P € (P), :
P ¢ U} is finite.

In the definition, “at non-isolated points” means “at each non-
isolated point of X.” It is obvious that a uniform base (point-
regular base, resp.) = a uniform base at non-isolated points (point-
regular base at non-isolated points, resp.), but we will see that
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a uniform base at non-isolated points (point-regular base at non-
isolated points, resp.) 7 a uniform base (point-regular base, resp.)
by Example 4.1.

Definition 1.2. Let X be a space and {P,,} be a sequence of open
subsets of X.

(1) {Pn} is called a quasi-development [8] for X if for every
x € U with U open in X, there exists n € N such that
x € st(z,Py) CU.

(2) {Pn} is called a development (development at non-isolated
points, resp.) for X if {st(z, Py) }nen is a neighborhood base
at z in X for each (non-isolated, resp.) point x € X.

(3) X is called quasi-developable (developable, developable at
non-isolated points, resp.) if X has a quasi-development
(development, development at non-isolated points, resp.).

It is obvious that every development for a space is a development
at non-isolated points, but a space having a development at non-
isolated points may not have a development; see Example 4.2.

Definition 1.3. Let f: X — Y be a map.

(1) f is a compact map (s-map, resp.) if each f~1(y) is com-
pact (separable, resp.) in X;

(2) fis a boundary-compact map (boundary-finite map, at most
boundary-one map, resp.) if each f~1(y) is compact (finite,
at most one point, resp.) in X;

(3) f is an open map if whenever U is open in X, then f(U) is
open in Y

(4) f is a bi-quotient map (countably bi-quotient map, resp.) if
for any y € Y and any (countable, resp.) family ¢ of open
subsets in X with f~1(y) C Ul, there exists a finite subset
U’ C U such that y € Intf(UU');

(5) f is a pseudo-open map if whenever f~1(y) C U with U
open in X, then y € Int(f(U)).

It is easy to see that open = bi-quotient = countably bi-quotient
= pseudo-open = quotient.
Definition 1.4. Let X be a space.

(1) A collection U of subsets of X is said to be @ (i.e., interior-
preserving) if Int(NW) = N{IntW : W € W} for every
wcu.
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(2) An ortho-base [17] B for X is a base of X such that either N.A
is open in X or NA = {z} ¢ Z(X) and A is a neighborhood
base at = in X for each A C B. A space X is a proto-
metrizable space [13] if it is a paracompact space with an
ortho-base.

(3) A sharp base [2] B of X is a base of X such that, for ev-
ery injective sequence {B,} C B, if x € (),cy B, then
{N;<,, Bi}nen is a neighborhood base at x.

(4) A base B of X is said to be a base of countable order (BCO)
if, for any x € X, if {B;} C B is a strictly decreasing
sequence, then {B;};cn is a neighborhood base at x.

It is well known ([2], [5], [6]) that
(1) uniform base = o-point-finite base = 0-Q base;
(2) uniform base = sharp base, developable space = BCO,
Gs-diagonal;
(3) sharp base = point-countable base.
Readers may refer to [11] and [18] for unstated definitions and
terminology.

2. SOME LEMMAS
In this section, some technical lemmas are given.

Lemma 2.1. Let P be a base for a space X. Then the following
are equivalent.

(1) P is a uniform base at non-isolated points for X ;
(2) P is a point-reqular base at non-isolated points for X.

Proof: (2) = (1) is trivial. We need only to prove (1) = (2).

Let P be a uniform base at non-isolated points for X. If there
exist a non-isolated point x € X and an open subset U in X with
x € U such that {P € (P), : P ¢ U} is infinite, take {P, : n €
N} c{P € (P),: P ¢ U}, and choose x,, € P, \ U for each n € N.
Then {P,},en is a neighborhood base at z; thus, the sequence
{x,} converges to z in X. Hence, x,, € U for some m € N, a
contradiction. Therefore, P is a point-regular base at non-isolated
points for X. O

Lemma 2.2. Let {P,} be a development at non-isolated points for
a space X . If Py, is point-finite at each non-isolated point and P11
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refines Py, for eachn € N, then P = I(X)U(U,,en Pn) is a uniform
base at non-isolated points for X.

Proof: Let x be a non-isolated point in X and {P,, : m € N}
be an infinite subset of (P),. By the point-finiteness, there exists
Py, € Pp, such that mj, < my4q1 and n, < ng4q for each £ € N.
Since {Py, } is a development at non-isolated points for X, { Py, }ren
is a neighborhood base at z in X, so {P,,}men is a neighborhood

base at . Thus, P is a uniform base at non-isolated points for
X. O

Let P be a family of subsets of a space X. P is called point-
finite at non-isolated points (point-countable at non-isolated points,
resp.) if for each non-isolated point x € X, x belongs to at most
finite (countable, resp.) elements of P. Let {P,,} be a development
(development at non-isolated points, resp.) for X. {P,} is said
to be a point-finite development (point-finite development at non-
isolated points, resp.) for X if each P, is point-finite at each (non-
isolated, resp.) point of X.

Lemma 2.3. A space X has a uniform base at non-isolated points if
and only if X has a point-finite development at non-isolated points.

Proof: Sufficiency. It is easy to see by Lemma 2.2.

Necessity. Let P be a uniform base at non-isolated points for
X. Then P is a point-regular base at non-isolated points by Lemma
2.1. We can assume that if P € P and P C I(X), P is a single
point set.

CrLAIM. Let x be a non-isolated point of X and y # x. Then
{H € P:{z,y} C H} is finite.

In fact, {H € P: {z,y} CH} C(P),. f {H P :{x,y} C H}
is infinite, then it is a local base at z; hence, y — x, a contradiction.

(a) P is point-countable at non-isolated points in X.

Let £ € X be a non-isolated point. There is a non-trivial se-
quence {z,} converging to x. By the Claim, {P € (P), : =, € P}
is finite for each n, then (P)y = U,eniP € (P)z @ #p € P} is
countable.

A family F of subsets of X is said to have the property (f) if for
any F € F\Z(X), then {H € F: F C H} is finite.

(b) P has the property (f).
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Since F' € P\ Z(X), then F contains a non-isolated point and
|F'| > 1. By the Claim, P has the property ().

Put
P ={HeP:if HCPeP,then P=H}UZ(X) and,
P =(P\P™)UILX).
(c) P™ is an open cover and is point-finite at non-isolated points
for X.

There exists Hp € P™ such that P C Hp for each P € P\Z(X)
by (b). Thus, P™ is an open cover of X. If P™ is not point-finite at
some non-isolated point x € X, then there exists an infinite subset
{H, : n € N} of (P™),. For each n € N, H, ¢ Hj, there exists
Xy € Hyy1 \ Hi. Then z,, — = € Hy, a contradiction.

(d) P’ is a point-regular base at non-isolated points for X.

Let x € U \ I(X) with U open in X. There exist V,W € P
and y € V \ {z} such that x €¢ W C V \ {y} C V C U. Thus,
W € P’. Then P’ is a base for X, and it is a point-regular base at
non-isolated points for X.

Put Py = P™ and Pp41 = [(P\U,<,, Pi) UZ(X)]™ for any n € N.
Then P = {J,,cny P by (b). -

(e) {P,} is a point-finite development at non-isolated points for
X.

Each P, is point-finite at non-isolated points by (c) and (d). If
x € U\I(X) with U open in X, then {P € (P), : P ¢ U} is finite;
thus, there is n € N such that P C U whenever x € P € P, i.e.,
st(z,Pp) C U. So {P,} is a development at non-isolated points. [

Lemma 2.4 ([3], [4], [14]). The following are equivalent for a space
X.

1) X is an open compact image of a metric space;

2) X is a pseudo-open compact image of a metric space;
3) X has a uniform base;

4) X has a point-regular base;

5) X is a metacompact and developable space;

6) X is a space with a point-finite development.

Lemma 2.5. Fach pseudo-open, boundary-compact map is a bi-
quotient map.
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Proof: Let f : X — Y be a pseudo-open, boundary-compact
map. For each y € Y and a family U of open subsets in X with
fYy) c w, of*(y) c uU’ for some finite U’ C U. We can
assume that there exists U € U’ such that U N f~1(y) # 0. Thus,
y € f(U). Let V = (W) UInt(f~(y)). Then f~1(y) C V. Since f
is pseudo-open,

y € Int(f(V)) C F(WU) U fHy) = fud') Uy} = f(uU'),

so f(uld’) is a neighborhood of y in Y. Hence, f is a bi-quotient
map. [l

3. MAIN RESULTS

In this section, spaces with a uniform base at non-isolated points
are discussed and some characterizations of images of metric spaces
by boundary-compact maps are given.

Theorem 3.1. The following are equivalent for a space X.

(1) X is an open, boundary-compact image of a metric space;
(2) X has a uniform base at non-isolated points;

(3) X has a point-regular base at non-isolated points;

(4) X has a point-finite development at non-isolated points.

Proof: Tt is obvious that (2) < (3) < (4) by Lemma 2.1 and
Lemma 2.3.

(1) = (4). Let M be a metric space and f : M — X be an open,
boundary-compact map. By [11, 5.4.E], we can choose a sequence
{B,} of open covers of M such that {st(K, B;)}ien is a neighborhood
base of K in M for each compact subset K C M. For each i € N,
we can assume that B;11 is a locally finite open refinement of B;,
and set P; = f(B;) UZ(X). Then P; is an open cover of X for each
i € N. If z is an accumulation point of X, then Intf~!(z) = (); thus,
f~Yy) = 0f (x) is compact in M. Hence, {B € B; : BNf~(z) #
0} is finite by the local finiteness of B;, i.e., (P;), is finite. This
shows that P; is point-finite at non-isolated points. Next, we will
prove that {P;} is a development at non-isolated points for X. Let
x € U\ I(X) with U open in X. Since f~!(z) is compact, there
exists m € N such that st(f~1(z),Bn) C f71(U), so st(z,Pp) =
st(z, f(Bm)) C U. Thus, {P;} is a point-finite development at non-
isolated points for X.
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(4) = (1). First, a metric space M and a function f : M — X
are defined: Let {P,} be a point-finite development at non-isolated
points for X. For each n € N, assume that Z(X) C P, put P, =
{P,: a € Ay}, and endow A,, with the discrete topology. Put

M={a=(ap) € H Ayt {P,, }nen is a neighborhood base
neN
at some x4 € X }.

Then M, which is a subspace of the product space [],, .y An, is a
metric space. Define a function f : M — X by f((an)) = 2. Then
f((an)) = Npen Pan»> and f is well defined. (f, M, X, P,) is called a
Ponomarev system. It is easy to see that f is a map. The following
will prove that f is an open boundary-compact map.

(a) f is an open map.

For any a = () € M,n € N, put

B(ag, a9, ,an) ={(8i) € M : B; = oy whenever i < n}.

Then f(B(ai,az, - ,q,)) = ﬂiSnPai‘ In fact, if 8 = () €
B(Oél,OéQ, e ,Oén), f(ﬁ) = ﬂiENP/Bi C ﬂignpai‘ Thus

f(Blai,az, - ,ap)) C ﬂ P,,.
i<n
On the other hand, let z € (,.,, Pa,- Choose a countable family
{P3, }ien of subsets of X such that
(i) « € P, € P; for each i € N,
(ii) f; = o whenever i < n, and

(i) Pp, = {«} whenever i > n and x € I(X).

Put 8 = (5;). Then 8 € B(ag, g, ,ap) and f(B) = x. Thus,
ﬂz‘gn Pai - f(B(a1’a2’ T 7an))'

In conclusion, f(B(o, a2, ,an)) =)<, Pa;- Since

{B(a1, 9, - ,ay) : (o) € M,n € N}
is a base of M, f is an open map.

(b) f is a boundary-compact map.

Let x € X. If v € I(X), then 9f Yz) = 0. If » ¢ I(X),
ofY(z) = f~'(x) by (b). For each i € N, let I; = {a € A; :
x € P,}. Then I'; is finite. Thus, [[,.xI'; is a compact subset
of [T;en Ai- We need only to prove f~(z) = [[;cnTi- Indeed, if
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a = (o) € [[;en T, then { Py, }ien is a neighborhood base at z for
X. Thus, a € M and f(a) =z, so [[;ey s € f(z). On the other
hand, if o = (o) € f(2), then z € ;e Pa, and o € [[;en T
So f~4z) C [L;enTs. Thus, of () = f~H(2) = [[;en i is com-
pact. [l

In the Ponomarev system (f, M,X,P,), it always holds that

[ (@) C [lien{a € Ai : @ € Py} for each z € X. The follow-
ing corollary is obtained.

Corollary 3.2. A space X has a point-countable base which is
uniform at non-isolated points if and only if X is an open boundary-
compact, s-image of a metric space.

Corollary 3.3. Fach space having a uniform base at non-isolated
points is preserved by an open, boundary-finite map.

Proof: Let f : X — Y be an open boundary-finite map where
X has a uniform base at non-isolated points. There exist a metric
space M and an open boundary-compact map g : M — X by
Theorem 3.1. Since d(f o g)~*(y) c U{0g ! (x) : x € df ~1(y)} for
eachy € Y, fog: M — Y is an open boundary-compact map.
Hence, Y has an uniform base at non-isolated points. (I

Theorem 3.4. Let X be a space having a uniform base at non-
1solated points. Then

(1) X is a quasi-developable space;

(2) X has an ortho-base and a o-@Q base.

Proof: By Theorem 3.1, let {P, }nen be a point-finite develop-
ment at non-isolated points for X. Put Py = Z(X). It is easy to
check that {P, }ne, is a quasi-development for X.

Let P = ,,c, Pn- Then P is a 0-Q base and an ortho-base for
X.

First, P, is interior-preserving for each n € N. Indeed, for each
A C Py, if v € NA—I(X), then (P,), is finite; thus, NA is a
neighborhood of z in X. So P is a 0-Q base for X.

Secondly, let A C P with NA not open in X. Then there exists
x € NA such that NA is not a neighborhood of x in X; thus, = is
a non-isolated point and (P,,), is finite for each n € N. Let z € U
with U open in X. There exists n € N such that z € st(x,P,) C U.
Choose m > n and A € ANP,,. Then A C st(x,P,) C U; thus, A

new
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is a neighborhood base at z in X. So NA is a single point subset.
Hence, P is an ortho-base for X. [l

Corollary 3.5. Let X be a space having a uniform base at non-
isolated points. Then (1) = (2) < (3) in the following.

(1) X has a sharp base;

(2) X is a developable space;

(3) I(X) is an Fy-set in X.

Proof: (1) = (3) is proved in [7, Theorem 3.1] for any space
X. (2) = (3) is obvious because each open subset of a developable
space is an F-set.

To prove (3) = (2), let {B,} be a point-finite development at
non-isolated points for X by Theorem 3.1. Since I(X) is an Fj-
set, there exists a sequence {G,} of open subsets of X such that
X — I(X) = (e Gn- For each n € N, let

U, ={G U {{z}: 2z € X — G,}.

Then {B,,U,} is a development for X. Hence, X is a developable
space. ]

The following corollary holds by Lemma 2.4.

Corollary 3.6. A space X is an open compact image of a metric
space if and only if X is a perfect, metacompact space, which is an
open boundary-compact image of a metric space.

By the corollary, some metrizable theorems on spaces with a
uniform base at non-isolated points can be obtained. For example,
let X be a space with a uniform base at non-isolated points, then
X is metrizable if and only if it is a perfect, collectionwise normal
space.

Now, a special space with a uniform base at non-isolated points
is discussed. Let (X,7) be a space and A C X. X is said to be
discretizable by A if X is endowed with the topology generated by
TU{{z} : x € A} as a base for X [17]. Denote the discretizable
space of X by Xa.

It is obvious that the topology of a space X is coarser than
the discretizable topology of X 4. If X has a uniform base, then
X 4 not only has a Gs-diagonal and a uniform base at non-isolated
points, but also has a o-point finite base. In [13, Theorem 3.1],
Gary Gruenhage and Phillip Zenor have shown that a space is a
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discretization of a metric space if and only if it is a proto-metrizable
space having a Gs-diagonal.

Theorem 3.7. Each discretizable space of a space having a uniform
base is an open compact and at most boundary-one image of a space
having a uniform base.

Proof: Let X be a space having a uniform base. By Lemma 2.4,
there is a point-finite development {U,,} for X, where U, 11 refines
U, for each m € N. For each A C X, put

H= (X x{0})U (A xN);
V(z,m)={z} x ({0u{neN:n>m}),z € X,meN;
W(J,m) = ((J N (X - A)) x{0})
U(JNA)x{neN:n>m}),JCX,meN.
Endow H with a base consisting of the following elements:
V(x,m),Ve € A;m € N;
W(J,m),V open subset J C X, m € N;
{z},z € AxN.
Then H is a Ts-space.
For any m € N, let
P ={V(x,m):z e A}U{W(U,m):U € Uy}
U{{h}:he Ax{1,2,--- ,m—1}}.
Then {Pp, }m>2 is a point-finite development for H. Hence, H has
a uniform base.

Let m | : H — X 4 be the projective map. It is easy to see that

71| is an open compact and at most boundary-one map. O

Hence, each discretizable space of a space having a uniform base
is in MOBI [8].

Liu [16] gave some characterizations of quotient (pseudo-open,
resp.) boundary-compact images of metric spaces. The following
are further results.

Theorem 3.8. The following are equivalent for a space X.
(1) X is first-countable;
(2) X is an image of a metric space under a pseudo-open, at
most boundary-one (boundary-compact, resp.) map;
(3) X is an image of a metric space under a bi-quotient, at
most boundary-one (boundary-compact, resp.) map.

Proof: (1) < (2) was proved in [16, Corollary 2.1], and (2) < (3)
is true by Lemma 2.5. O
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Theorem 3.9. The following are equivalent for a space X.

(1) X has a point-countable base;

(2) X is a countably bi-quotient, s-image of a metric space;

(3) X is a pseudo-open, boundary-compact and s-image of a
metric space;

(4) X is a bi-quotient, at most boundary-one and countable-to-
one image of a metric space.

Proof: Liu proved in [16] that a space has a point-countable
base if and only if it is a pseudo-open, at most boundary-one and
countable-to-one image of a metric space. Thus, (1) < (4) by
Lemma 2.5. (4) = (3) is trivial. (3) = (2) by Lemma 2.5, and
(2) & (1) by [21]. O

4. EXAMPLES

In this section, we provide some examples which show certain
relationships among boundary-compact images of metric spaces and
generalized metric spaces.

Example 4.1. Let X be the closed unit interval I = [0,1] and B
be a Bernstein subset of X . In other words, B is an uncountable set
which contains no uncountable closed subset of X. The discretizable
space Xp is called the Michael line [20].

Let X* be a copy of Xp and f : Xp — X™* be a homeomorphism.
Put Z = Xp @ X*, and let Y be a quotient space obtained from
Z by identifying {z, f(x)} to a point for each z € Xp \ B. Then

(1) Xp is a discretizable space of the metric space I, so, by
Theorem 3.7, it is a proto-metrizable space and an open
compact, at most boundary-one image of a space with a
uniform base.

(2) Xp is not a BCO space; hence, it is not an open compact
image of a metric space;

(3) Y is an open boundary-compact, s-image of a metric space;

(4) Y has no Gs-diagonal by [23, Example 1].

It is obvious that X g is a paracompact space which is a discretiz-
able space of the metric space I. If Xp is BCO, it is a developable
space, and then B is an F,-set in Xpg, a contradiction. Thus, Xp
is not BCO.
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It is easy to check that Y has a point-countable base which is
uniform at non-isolated points. Hence, Y is an open boundary-
compact, s-image of a metric space by Corollary 3.2.

Example 4.2. Let ¢(D) be the Isbell-Mréwka space [22], here
|D| > Rg. Then
(1) (D) is an open, boundary-compact image of a metric space;
(2) ¥(D) is not a metalindelof space;
(3) ¥(D) is a developable space if |D| = Ry;
(4) ¥(D) is not a perfect space if |D| > c.

A collection C of subsets of an infinite set D is said to be almost
disjoint if AN B is finite whenever A # B € C. Let A be an almost
disjoint collection of countably infinite subsets of D and maximal
with respect to the properties. Then |A| > |D|* [15]. The Isbell-
Mréwka space (D) is the set AU D endowed with the following
topology: The points of D are isolated. Basic neighborhoods of a
point A € A are the sets of the form {A} U (A — F) where F is a
finite subset of D.

Let X = ¢(D), A= {Aq}acr, and each A, = {z(a,n) : n € N}.
For each n € N, put

B, ={{A.}U{z(a,m) : m>n}:ac AtU{{z}:z € D}.

It is easy to see that {B,} is a point-finite development for X.
Thus, X is the open, boundary-compact image of a metric space
by Theorem 3.1. Since an open cover {{As} U D}aep of X has
no point-countable open refinement, X is not a metalindelof space.
Thus, X is not an open s-image of a metric space, and X is not a
discretizable space of a space with a uniform base by Theorem 3.7.

If D is countable, it is obvious that (D) is a developable space.
Hence, 9(D) has a Gs-diagonal, but ¢(D) has no point-countable
base because ¥ (D) is not a metalindeldf space.

If |D| > ¢, (D) is not a developable space [9]; thus, (D) is not
perfect by Corollary 3.5.

Example 4.3. There is a space X such that

(1) X has a sharp base;

(2) X does not have a uniform base at non-isolated points;

(3) X is an open compact and countable-to-one image of a space
with a uniform base.
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A space X having properties (1)—(3) is constructed in [2, Ex-
ample 5.1], where it is shown that X has a non-developable space
with a sharp base. Since X has no isolated point, it is not an open,
boundary-compact image of a metric space and does not have a uni-
form base at non-isolated points by Theorem 3.1. J. Chaber, in [10,
Example 4.5], proved that X is an open compact and countable-to-
one image of a space with a uniform base.

Example 4.4. There is a bi-quotient, at most boundary-one image
X of a metric space such that X is neither a pseudo-open s-image of
a metric space, nor an open, boundary-compact image of a metric
space.

Let X = R? be endowed with the butterfly topology [19]. It is
easy to see that X is a first-countable, paracompact space without
any isolated point. Since X is a first-countable space, then X is
a bi-quotient, at most boundary-one image of a metric space by
Theorem 3.8. Since X does not have a point-countable base [18,
Example 1.8.3], X is not a countably bi-quotient s-image of a metric
space by Theorem 3.9. Because each pseudo-open map from a space
onto a first-countable space is countably bi-quotient [21], X is not a
pseudo-open s-image of a metric space. If X is an open, boundary-
compact image of a metric space, X is an open compact image of
a metric space, for X does not contain any isolated point. So X is
a developable space by Lemma 2.4. Thus, X is a metric space, a
contradiction.

Example 4.5. There is a proto-metrizable space without any uni-
form base at non-isolated points.

Gruenhage in [12, p. 363] constructed a proto-metrizable X
which is not a 7-space. Hence, X has no o-Q base by [18, Propo-
sition 1.7.10], and it has no uniform base at non-isolated points by
Theorem 3.4.

Example 4.6. There is a space such that it is an open compact
image of a metric space, which is not any open, at most boundary-
one image of a metric space.

Yoshio Tanaka in [24, Example 3.1] constructed a non-regular
Th-space X which is an open, at most two-to-one image of a metric
space. Since X has no isolated point, it is not an open, at most
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boundary-one image of a metric space. Otherwise, X is an image
of a metric space under an open and bijective map, and then X is
homeomorphic to a metric space, a contradiction.

5. (QUESTIONS

Some questions are posed in this final section.

Question 5.1. Let a space X have a point-countable base. If X
has a uniform base at non-isolated points, is X an open, boundary-
compact, s-image of a metric space?

Question 5.2. Is an open and boundary-compact s-image of a met-
ric space an open, boundary-compact and countable-to-one image
of a metric space?

Question 5.3. How could a discretizable space of a space with a
uniform base be characterized by a certain image of a metric space?
For example, is the open compact and at most boundary-one image
of a space with a uniform base a discretizable space of a space with
a uniform base?

Question 5.4. How could a space which is an open, at most
boundary-one, s-image of a metric space be characterized?

Acknowledgment. The authors would like to thank the referee
for his/her valuable suggestions.

REFERENCES

[1] P. [S.] Aleksandrov, On the metrisation of topological spaces (Russian),
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 135-140.

[2] B. Alleche, A. V. Arhangel’skii, and J. Calbrix, Weak developments and
metrization, Topology Appl. 100 (2000), no. 1, 23-38.

[3] A.[V.] Arhangel’skii, On mappings of metric spaces (Russian), Dokl. Akad.
Nauk SSSR 145 (1962), 245-247.

, Intersection of topologies, and pseudo-open bicompact mappings
(Russian), Dokl. Akad. Nauk SSSR 226 (1976), no. 4, 745-748.

[5] A. V. Arhangel’skil, W. Just, E. A. Rezniczenko, and P. J. Szeptycki,
Sharp bases and weakly uniform bases versus point-countable bases, Topol-
ogy Appl. 100 (2000), no. 1, 39-46.

[6] C. E. Aull, A survey paper on some base azioms, Topology Proc. 3 (1978),
no. 1, 1-36 (1979).




274
(7]
8]

[9]

(10]

(11]

(12]
(13]
(14]

(15]

(16]
(17]

(18]

(19]
20]
(21]

(22]
23]

24]

F. LIN AND S. LIN

Zoltan Balogh and Dennis K. Burke, Two results on spaces with a sharp
base, Topology Appl. 154 (2007), no. 7, 1281-1285.

H. R. Bennett, On Arhangel’skii’s class MOBI, Proc. Amer. Math. Soc.
26 (1970), 178-180.

J. Chaber, Primitive generalizations of o-spaces, in Topology, Vol. II. Col-
loquia Mathematica Societatis Jdnos Bolyai, 23. Amsterdam-New York:
North-Holland, 1980. 259-268.

, More nondevelopable spaces in MOBI, Proc. Amer. Math. Soc.
103 (1988), no. 1, 307-313.

Ryszard Engelking, General Topology. Translated from the Polish by the
author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann
Verlag, 1989.

Gary Gruenhage, A note on quasi-metrizability, Canad. J. Math. 29 (1977),
no. 2, 360-366.

Gary Gruenhage and Phillip Zenor, Proto-metrizable spaces, Houston J.
Math. 3 (1977), no. 1, 47-53.

R. W. Heath, Screenability, pointwise paracompactness, and metrization of
Moore spaces, Canad. J. Math. 16 (1964), 763-770.

Kenneth Kunen, Set Theory. An Introduction to Independence Proofs.
Studies in Logic and the Foundations of Mathematics, 102. Amsterdam-
New York: North-Holland Publishing Co., 1980.

Chuan Liu, A note on point-countable weak bases, Questions Answers Gen.
Topology 25 (2007), no. 1, 57-61.

W. F. Lindgren and P. J. Nyikos, Spaces with bases satisfying certain order
and intersection properties, Pacific J. Math. 66 (1976), no. 2, 455-476.

Shou Lin, Guangyi duliang kongjian yu yingshe (Chinese) [Generalized
metric spaces and maps]. 2nd ed. Kexue Chubanshe (Science Press), Bei-
jing, 2007.

Louis F. McAuley, A relation between perfect separability, completeness,
and normality in semi-metric spaces, Pacific J. Math. 6 (1956), 315-326.

E. [A.] Michael, The product of a normal space and a metric space need
not be normal, Bull. Amer. Math. Soc. 69 (1963), 375-376.

, A quintuple quotient quest, General Topology and Appl. 2 (1972),
91-138.

S. Mréwka, On completely regular spaces, Fund. Math. 41 (1954), 105-106.

Vlasil] [Atanasov] Popov, A perfect map need not preserve a Gs-diagonal,
General Topology and Appl. 7 (1977), no. 1, 31-33.

Yoshio Tanaka, On open finite-to-one maps, Bull. Tokyo Gakugei Univ. (4)
25 (1973), 1-13.



UNIFORM COVERS AT NON-ISOLATED POINTS 275

(F. Lin) DEPARTMENT OF MATHEMATICS; ZHANGZHOU NORMAL UNIVER-
SITY; ZHANGZHOU 363000, P. R. CHINA
E-mail address: 1£c197910010163. com

(S. Lin) DEPARTMENT OF MATHEMATICS; ZHANGZHOU NORMAL UNIVER-
SITY; ZHANGZHOU 363000, P. R. CHINA; AND INSTITUTE OF MATHEMATICS;
NINGDE TEACHERS’ COLLEGE; NINGDE, FujianN 352100, P. R. CHINA

E-mail address: 1inshou@public.ndptt.fj.cn





