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UNIFORM COVERS AT
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Abstract. In this paper, the authors define a space with a
uniform base at non-isolated points, give some characteriza-
tions of images of metric spaces by boundary-compact maps,
and study certain relationships among spaces with special
base properties. The main results are the following: (1) X
is an open, boundary-compact image of a metric space if and
only if X has a uniform base at non-isolated points; (2) each
discretizable space of a space with a uniform base is an open
compact and at most boundary-one image of a space with a
uniform base; (3) X has a point-countable base if and only if
X is a bi-quotient, at most boundary-one and countable-to-
one image of a metric space.

1. Introduction

Topologists obtained many interesting characterizations of the
images of metric spaces by some kind of maps. A. V. Arhangel’skǐı
[3] proved that a space X is an open compact image of a metric
space if and only if X has a uniform base. Recently, Chuan Liu [16]
gave a new characterization of spaces with a point-countable base
by pseudo-open and at most boundary-one images of metric spaces.
How could an open or pseudo-open and boundary-compact image
of a metric space be characterized? On the other hand, a study of
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spaces with a sharp base or a weakly uniform base [5], [6] shows
that some properties of a non-isolated point set of a topological
space will help us discuss a whole construction of a space. In this
paper, the authors analyze some base properties on non-isolated
points of a space, introduce a space having a uniform base at non-
isolated points and describe it as an image of a metric space by open
boundary-compact maps. Some relationships among the images of
metric spaces under open boundary-compact maps, pseudo-open
boundary-compact maps, open compact maps, and spaces with a
point-countable base are discussed.

By R,N, denote the set of real numbers and positive integers,
respectively. For a space X, let

I(X) = {x : x is an isolated point of X}
and

I(X) = {{x} : x ∈ I(X)}.
In this paper, all spaces are T2 and all maps are continuous and

onto. Recall some basic definitions.
Let X be a topological space. X is called a metacompact (para-

compact, metalindelöf , resp.) space if every open cover of X has a
point-finite (locally finite, point-countable, resp.) open refinement.
X is said to have a Gδ-diagonal if the diagonal ∆ = {(x, x) : x ∈ X}
is a Gδ-set in X×X. X is called a perfect space if every open subset
of X is an Fσ-set in X.

Definition 1.1. Let P be a base of a space X.
(1) P is a uniform base [1] (uniform base at non-isolated points,

resp.) for X, if for each (non-isolated, resp.) point x ∈ X
and each countably infinite subset P ′ of (P)x, P ′ is a neigh-
borhood base at x.

(2) P is a point-regular base [1] ( point-regular base at non-
isolated points, resp.) for X if for each (non-isolated, resp.)
point x ∈ X and x ∈ U with U open in X, {P ∈ (P)x :
P 6⊂ U} is finite.

In the definition, “at non-isolated points” means “at each non-
isolated point of X.” It is obvious that a uniform base (point-
regular base, resp.) ⇒ a uniform base at non-isolated points (point-
regular base at non-isolated points, resp.), but we will see that
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a uniform base at non-isolated points (point-regular base at non-
isolated points, resp.) 6⇒ a uniform base (point-regular base, resp.)
by Example 4.1.

Definition 1.2. Let X be a space and {Pn} be a sequence of open
subsets of X.

(1) {Pn} is called a quasi-development [8] for X if for every
x ∈ U with U open in X, there exists n ∈ N such that
x ∈ st(x,Pn) ⊂ U .

(2) {Pn} is called a development (development at non-isolated
points, resp.) for X if {st(x,Pn)}n∈N is a neighborhood base
at x in X for each (non-isolated, resp.) point x ∈ X.

(3) X is called quasi-developable (developable, developable at
non-isolated points, resp.) if X has a quasi-development
(development, development at non-isolated points, resp.).

It is obvious that every development for a space is a development
at non-isolated points, but a space having a development at non-
isolated points may not have a development; see Example 4.2.

Definition 1.3. Let f : X → Y be a map.
(1) f is a compact map (s-map, resp.) if each f−1(y) is com-

pact (separable, resp.) in X;
(2) f is a boundary-compact map (boundary-finite map, at most

boundary-one map, resp.) if each ∂f−1(y) is compact (finite,
at most one point, resp.) in X;

(3) f is an open map if whenever U is open in X, then f(U) is
open in Y ;

(4) f is a bi-quotient map (countably bi-quotient map, resp.) if
for any y ∈ Y and any (countable, resp.) family U of open
subsets in X with f−1(y) ⊂ ∪U , there exists a finite subset
U ′ ⊂ U such that y ∈ Intf(∪U ′);

(5) f is a pseudo-open map if whenever f−1(y) ⊂ U with U
open in X, then y ∈ Int(f(U)).

It is easy to see that open⇒ bi-quotient⇒ countably bi-quotient
⇒ pseudo-open ⇒ quotient.

Definition 1.4. Let X be a space.
(1) A collection U of subsets of X is said to be Q (i.e., interior-

preserving) if Int(∩W) = ∩{IntW : W ∈ W} for every
W ⊂ U .
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(2) An ortho-base [17] B for X is a base of X such that either ∩A
is open in X or ∩A = {x} /∈ I(X) and A is a neighborhood
base at x in X for each A ⊂ B. A space X is a proto-
metrizable space [13] if it is a paracompact space with an
ortho-base.

(3) A sharp base [2] B of X is a base of X such that, for ev-
ery injective sequence {Bn} ⊂ B, if x ∈ ⋂

n∈NBn, then
{⋂i≤n Bi}n∈N is a neighborhood base at x.

(4) A base B of X is said to be a base of countable order (BCO)
if, for any x ∈ X, if {Bi} ⊂ B is a strictly decreasing
sequence, then {Bi}i∈N is a neighborhood base at x.

It is well known ([2], [5], [6]) that
(1) uniform base ⇒ σ-point-finite base ⇒ σ-Q base;
(2) uniform base ⇒ sharp base, developable space ⇒ BCO,

Gδ-diagonal;
(3) sharp base ⇒ point-countable base.

Readers may refer to [11] and [18] for unstated definitions and
terminology.

2. Some lemmas

In this section, some technical lemmas are given.

Lemma 2.1. Let P be a base for a space X. Then the following
are equivalent.

(1) P is a uniform base at non-isolated points for X;
(2) P is a point-regular base at non-isolated points for X.

Proof: (2) ⇒ (1) is trivial. We need only to prove (1) ⇒ (2).
Let P be a uniform base at non-isolated points for X. If there

exist a non-isolated point x ∈ X and an open subset U in X with
x ∈ U such that {P ∈ (P)x : P 6⊂ U} is infinite, take {Pn : n ∈
N} ⊂ {P ∈ (P)x : P 6⊂ U}, and choose xn ∈ Pn \U for each n ∈ N.
Then {Pn}n∈N is a neighborhood base at x; thus, the sequence
{xn} converges to x in X. Hence, xm ∈ U for some m ∈ N, a
contradiction. Therefore, P is a point-regular base at non-isolated
points for X. ¤
Lemma 2.2. Let {Pn} be a development at non-isolated points for
a space X. If Pn is point-finite at each non-isolated point and Pn+1
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refines Pn for each n ∈ N, then P = I(X)∪(
⋃

n∈N Pn) is a uniform
base at non-isolated points for X.

Proof: Let x be a non-isolated point in X and {Pm : m ∈ N}
be an infinite subset of (P)x. By the point-finiteness, there exists
Pmk

∈ Pnk
such that mk < mk+1 and nk < nk+1 for each k ∈ N.

Since {Pn} is a development at non-isolated points for X, {Pmk
}k∈N

is a neighborhood base at x in X, so {Pm}m∈N is a neighborhood
base at x. Thus, P is a uniform base at non-isolated points for
X. ¤

Let P be a family of subsets of a space X. P is called point-
finite at non-isolated points (point-countable at non-isolated points,
resp.) if for each non-isolated point x ∈ X, x belongs to at most
finite (countable, resp.) elements of P. Let {Pn} be a development
(development at non-isolated points, resp.) for X. {Pn} is said
to be a point-finite development (point-finite development at non-
isolated points, resp.) for X if each Pn is point-finite at each (non-
isolated, resp.) point of X.

Lemma 2.3. A space X has a uniform base at non-isolated points if
and only if X has a point-finite development at non-isolated points.

Proof: Sufficiency. It is easy to see by Lemma 2.2.
Necessity. Let P be a uniform base at non-isolated points for

X. Then P is a point-regular base at non-isolated points by Lemma
2.1. We can assume that if P ∈ P and P ⊂ I(X), P is a single
point set.
Claim. Let x be a non-isolated point of X and y 6= x. Then
{H ∈ P : {x, y} ⊂ H} is finite.

In fact, {H ∈ P : {x, y} ⊂ H} ⊂ (P)x. If {H ∈ P : {x, y} ⊂ H}
is infinite, then it is a local base at x; hence, y → x, a contradiction.

(a) P is point-countable at non-isolated points in X.
Let x ∈ X be a non-isolated point. There is a non-trivial se-

quence {xn} converging to x. By the Claim, {P ∈ (P)x : xn ∈ P}
is finite for each n, then (P)x =

⋃
n∈N{P ∈ (P)x : xn ∈ P} is

countable.
A family F of subsets of X is said to have the property (]) if for

any F ∈ F \ I(X), then {H ∈ F : F ⊂ H} is finite.
(b) P has the property (]).
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Since F ∈ P \ I(X), then F contains a non-isolated point and
|F | > 1. By the Claim, P has the property (]).

Put
Pm = {H ∈ P : if H ⊂ P ∈ P, then P = H} ∪ I(X) and,
P ′ = (P \ Pm) ∪ I(X).

(c) Pm is an open cover and is point-finite at non-isolated points
for X.

There exists HP ∈ Pm such that P ⊂ HP for each P ∈ P \I(X)
by (b). Thus, Pm is an open cover of X. If Pm is not point-finite at
some non-isolated point x ∈ X, then there exists an infinite subset
{Hn : n ∈ N} of (Pm)x. For each n ∈ N, Hn 6⊂ H1, there exists
xn ∈ Hn+1 \H1. Then xn → x ∈ H1, a contradiction.

(d) P ′ is a point-regular base at non-isolated points for X.

Let x ∈ U \ I(X) with U open in X. There exist V,W ∈ P
and y ∈ V \ {x} such that x ∈ W ⊂ V \ {y} ⊂ V ⊂ U . Thus,
W ∈ P ′. Then P ′ is a base for X, and it is a point-regular base at
non-isolated points for X.

Put P1 = Pm and Pn+1 = [(P\⋃i≤n Pi)
⋃ I(X)]m for any n ∈ N.

Then P =
⋃

n∈N Pn by (b).

(e) {Pn} is a point-finite development at non-isolated points for
X.

Each Pn is point-finite at non-isolated points by (c) and (d). If
x ∈ U \ I(X) with U open in X, then {P ∈ (P)x : P 6⊂ U} is finite;
thus, there is n ∈ N such that P ⊂ U whenever x ∈ P ∈ Pn, i.e.,
st(x,Pn) ⊂ U . So {Pn} is a development at non-isolated points. ¤

Lemma 2.4 ([3], [4], [14]). The following are equivalent for a space
X.

(1) X is an open compact image of a metric space;
(2) X is a pseudo-open compact image of a metric space;
(3) X has a uniform base;
(4) X has a point-regular base;
(5) X is a metacompact and developable space;
(6) X is a space with a point-finite development.

Lemma 2.5. Each pseudo-open, boundary-compact map is a bi-
quotient map.
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Proof: Let f : X → Y be a pseudo-open, boundary-compact
map. For each y ∈ Y and a family U of open subsets in X with
f−1(y) ⊂ ∪U , ∂f−1(y) ⊂ ∪U ′ for some finite U ′ ⊂ U . We can
assume that there exists U ∈ U ′ such that U ∩ f−1(y) 6= ∅. Thus,
y ∈ f(U). Let V = (∪U ′) ∪ Int(f−1(y)). Then f−1(y) ⊂ V . Since f
is pseudo-open,

y ∈ Int(f(V )) ⊂ f((∪U ′) ∪ f−1(y)) = f(∪U ′) ∪ {y} = f(∪U ′),
so f(∪U ′) is a neighborhood of y in Y . Hence, f is a bi-quotient
map. ¤

3. Main results

In this section, spaces with a uniform base at non-isolated points
are discussed and some characterizations of images of metric spaces
by boundary-compact maps are given.

Theorem 3.1. The following are equivalent for a space X.
(1) X is an open, boundary-compact image of a metric space;
(2) X has a uniform base at non-isolated points;
(3) X has a point-regular base at non-isolated points;
(4) X has a point-finite development at non-isolated points.

Proof: It is obvious that (2) ⇔ (3) ⇔ (4) by Lemma 2.1 and
Lemma 2.3.

(1) ⇒ (4). Let M be a metric space and f : M → X be an open,
boundary-compact map. By [11, 5.4.E], we can choose a sequence
{Bi} of open covers of M such that {st(K,Bi)}i∈N is a neighborhood
base of K in M for each compact subset K ⊂ M . For each i ∈ N,
we can assume that Bi+1 is a locally finite open refinement of Bi,
and set Pi = f(Bi)∪I(X). Then Pi is an open cover of X for each
i ∈ N. If x is an accumulation point of X, then Intf−1(x) = ∅; thus,
f−1(y) = ∂f−1(x) is compact in M . Hence, {B ∈ Bi : B∩f−1(x) 6=
∅} is finite by the local finiteness of Bi, i.e., (Pi)x is finite. This
shows that Pi is point-finite at non-isolated points. Next, we will
prove that {Pi} is a development at non-isolated points for X. Let
x ∈ U \ I(X) with U open in X. Since f−1(x) is compact, there
exists m ∈ N such that st(f−1(x),Bm) ⊂ f−1(U), so st(x,Pm) =
st(x, f(Bm)) ⊂ U . Thus, {Pi} is a point-finite development at non-
isolated points for X.
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(4) ⇒ (1). First, a metric space M and a function f : M → X
are defined: Let {Pn} be a point-finite development at non-isolated
points for X. For each n ∈ N, assume that I(X) ⊂ Pn, put Pn =
{Pα : α ∈ Λn}, and endow Λn with the discrete topology. Put

M = {α = (αn) ∈
∏

n∈N
Λn : {Pαn}n∈N is a neighborhood base

at some xα ∈ X}.
Then M , which is a subspace of the product space

∏
n∈N Λn, is a

metric space. Define a function f : M → X by f((αn)) = xα. Then
f((αn)) =

⋂
n∈N Pαn , and f is well defined. (f,M,X,Pn) is called a

Ponomarev system. It is easy to see that f is a map. The following
will prove that f is an open boundary-compact map.

(a) f is an open map.
For any α = (αn) ∈ M, n ∈ N, put

B(α1, α2, · · · , αn) = {(βi) ∈ M : βi = αi whenever i ≤ n}.
Then f(B(α1, α2, · · · , αn)) =

⋂
i≤n Pαi . In fact, if β = (βi) ∈

B(α1, α2, · · · , αn), f(β) =
⋂

i∈N Pβi ⊂
⋂

i≤n Pαi . Thus

f(B(α1, α2, · · · , αn)) ⊂
⋂

i≤n

Pαi .

On the other hand, let x ∈ ⋂
i≤n Pαi . Choose a countable family

{Pβi}i∈N of subsets of X such that
(i) x ∈ Pβi ∈ Pi for each i ∈ N,
(ii) βi = αi whenever i ≤ n, and
(iii) Pβi = {x} whenever i > n and x ∈ I(X).
Put β = (βi). Then β ∈ B(α1, α2, · · · , αn) and f(β) = x. Thus,⋂

i≤n Pαi ⊂ f(B(α1, α2, · · · , αn)).
In conclusion, f(B(α1, α2, · · · , αn)) =

⋂
i≤n Pαi . Since

{B(α1, α2, · · · , αn) : (αi) ∈ M,n ∈ N}
is a base of M , f is an open map.

(b) f is a boundary-compact map.
Let x ∈ X. If x ∈ I(X), then ∂f−1(x) = ∅. If x 6∈ I(X),

∂f−1(x) = f−1(x) by (b). For each i ∈ N, let Γi = {α ∈ Λi :
x ∈ Pα}. Then Γi is finite. Thus,

∏
i∈N Γi is a compact subset

of
∏

i∈N Λi. We need only to prove f−1(x) =
∏

i∈N Γi. Indeed, if
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α = (αi) ∈
∏

i∈N Γi, then {Pαi}i∈N is a neighborhood base at x for
X. Thus, α ∈ M and f(α) = x, so

∏
i∈N Γi ⊂ f−1(x). On the other

hand, if α = (αi) ∈ f−1(x), then x ∈ ⋂
i∈N Pαi and α ∈ ∏

i∈N Γi.
So f−1(x) ⊂ ∏

i∈N Γi. Thus, ∂f−1(x) = f−1(x) =
∏

i∈N Γi is com-
pact. ¤

In the Ponomarev system (f, M, X,Pn), it always holds that
f−1(x) ⊂ ∏

i∈N{α ∈ Λi : x ∈ Pα} for each x ∈ X. The follow-
ing corollary is obtained.

Corollary 3.2. A space X has a point-countable base which is
uniform at non-isolated points if and only if X is an open boundary-
compact, s-image of a metric space.

Corollary 3.3. Each space having a uniform base at non-isolated
points is preserved by an open, boundary-finite map.

Proof: Let f : X → Y be an open boundary-finite map where
X has a uniform base at non-isolated points. There exist a metric
space M and an open boundary-compact map g : M → X by
Theorem 3.1. Since ∂(f ◦ g)−1(y) ⊂ ⋃{∂g−1(x) : x ∈ ∂f−1(y)} for
each y ∈ Y , f ◦ g : M → Y is an open boundary-compact map.
Hence, Y has an uniform base at non-isolated points. ¤
Theorem 3.4. Let X be a space having a uniform base at non-
isolated points. Then

(1) X is a quasi-developable space;
(2) X has an ortho-base and a σ-Q base.

Proof: By Theorem 3.1, let {Pn}n∈N be a point-finite develop-
ment at non-isolated points for X. Put P0 = I(X). It is easy to
check that {Pn}n∈ω is a quasi-development for X.

Let P =
⋃

n∈ω Pn. Then P is a σ-Q base and an ortho-base for
X.

First, Pn is interior-preserving for each n ∈ N. Indeed, for each
A ⊂ Pn, if x ∈ ∩A − I(X), then (Pn)x is finite; thus, ∩A is a
neighborhood of x in X. So P is a σ-Q base for X.

Secondly, let A ⊂ P with ∩A not open in X. Then there exists
x ∈ ∩A such that ∩A is not a neighborhood of x in X; thus, x is
a non-isolated point and (Pn)x is finite for each n ∈ N. Let x ∈ U
with U open in X. There exists n ∈ N such that x ∈ st(x,Pn) ⊂ U .
Choose m ≥ n and A ∈ A ∩ Pm. Then A ⊂ st(x,Pn) ⊂ U ; thus, A
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is a neighborhood base at x in X. So ∩A is a single point subset.
Hence, P is an ortho-base for X. ¤
Corollary 3.5. Let X be a space having a uniform base at non-
isolated points. Then (1) ⇒ (2) ⇔ (3) in the following.

(1) X has a sharp base;
(2) X is a developable space;
(3) I(X) is an Fσ-set in X.

Proof: (1) ⇒ (3) is proved in [7, Theorem 3.1] for any space
X. (2) ⇒ (3) is obvious because each open subset of a developable
space is an Fσ-set.

To prove (3) ⇒ (2), let {Bn} be a point-finite development at
non-isolated points for X by Theorem 3.1. Since I(X) is an Fσ-
set, there exists a sequence {Gn} of open subsets of X such that
X − I(X) =

⋂
n∈NGn. For each n ∈ N, let

Un = {Gn} ∪ {{x} : x ∈ X −Gn}.
Then {Bn,Un} is a development for X. Hence, X is a developable
space. ¤

The following corollary holds by Lemma 2.4.

Corollary 3.6. A space X is an open compact image of a metric
space if and only if X is a perfect, metacompact space, which is an
open boundary-compact image of a metric space.

By the corollary, some metrizable theorems on spaces with a
uniform base at non-isolated points can be obtained. For example,
let X be a space with a uniform base at non-isolated points, then
X is metrizable if and only if it is a perfect, collectionwise normal
space.

Now, a special space with a uniform base at non-isolated points
is discussed. Let (X, τ) be a space and A ⊂ X. X is said to be
discretizable by A if X is endowed with the topology generated by
τ ∪ {{x} : x ∈ A} as a base for X [17]. Denote the discretizable
space of X by XA.

It is obvious that the topology of a space X is coarser than
the discretizable topology of XA. If X has a uniform base, then
XA not only has a Gδ-diagonal and a uniform base at non-isolated
points, but also has a σ-point finite base. In [13, Theorem 3.1],
Gary Gruenhage and Phillip Zenor have shown that a space is a
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discretization of a metric space if and only if it is a proto-metrizable
space having a Gδ-diagonal.

Theorem 3.7. Each discretizable space of a space having a uniform
base is an open compact and at most boundary-one image of a space
having a uniform base.

Proof: Let X be a space having a uniform base. By Lemma 2.4,
there is a point-finite development {Um} for X, where Um+1 refines
Um for each m ∈ N. For each A ⊂ X, put

H = (X × {0}) ∪ (A× N);
V (x,m) = {x} × ({0} ∪ {n ∈ N : n ≥ m}), x ∈ X,m ∈ N;
W (J,m) = ((J ∩ (X −A))× {0})

∪((J ∩A)× {n ∈ N : n ≥ m}), J ⊂ X,m ∈ N.
Endow H with a base consisting of the following elements:

V (x,m), ∀x ∈ A,m ∈ N;
W (J,m),∀ open subset J ⊂ X, m ∈ N;
{x}, x ∈ A× N.

Then H is a T2-space.
For any m ∈ N, let

Pm = {V (x, m) : x ∈ A} ∪ {W (U,m) : U ∈ Um}
∪{{h} : h ∈ A× {1, 2, · · · ,m− 1}}.

Then {Pm}m≥2 is a point-finite development for H. Hence, H has
a uniform base.

Let π1|H : H → XA be the projective map. It is easy to see that
π1|H is an open compact and at most boundary-one map. ¤

Hence, each discretizable space of a space having a uniform base
is in MOBI [8].

Liu [16] gave some characterizations of quotient (pseudo-open,
resp.) boundary-compact images of metric spaces. The following
are further results.

Theorem 3.8. The following are equivalent for a space X.
(1) X is first-countable;
(2) X is an image of a metric space under a pseudo-open, at

most boundary-one (boundary-compact, resp.) map;
(3) X is an image of a metric space under a bi-quotient, at

most boundary-one (boundary-compact, resp.) map.

Proof: (1) ⇔ (2) was proved in [16, Corollary 2.1], and (2) ⇔ (3)
is true by Lemma 2.5. ¤
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Theorem 3.9. The following are equivalent for a space X.

(1) X has a point-countable base;
(2) X is a countably bi-quotient, s-image of a metric space;
(3) X is a pseudo-open, boundary-compact and s-image of a

metric space;
(4) X is a bi-quotient, at most boundary-one and countable-to-

one image of a metric space.

Proof: Liu proved in [16] that a space has a point-countable
base if and only if it is a pseudo-open, at most boundary-one and
countable-to-one image of a metric space. Thus, (1) ⇔ (4) by
Lemma 2.5. (4) ⇒ (3) is trivial. (3) ⇒ (2) by Lemma 2.5, and
(2) ⇔ (1) by [21]. ¤

4. Examples

In this section, we provide some examples which show certain
relationships among boundary-compact images of metric spaces and
generalized metric spaces.

Example 4.1. Let X be the closed unit interval I = [0, 1] and B
be a Bernstein subset of X. In other words, B is an uncountable set
which contains no uncountable closed subset of X. The discretizable
space XB is called the Michael line [20].

Let X∗ be a copy of XB and f : XB → X∗ be a homeomorphism.
Put Z = XB

⊕
X∗, and let Y be a quotient space obtained from

Z by identifying {x, f(x)} to a point for each x ∈ XB \B. Then

(1) XB is a discretizable space of the metric space I, so, by
Theorem 3.7, it is a proto-metrizable space and an open
compact, at most boundary-one image of a space with a
uniform base.

(2) XB is not a BCO space; hence, it is not an open compact
image of a metric space;

(3) Y is an open boundary-compact, s-image of a metric space;
(4) Y has no Gδ-diagonal by [23, Example 1].

It is obvious that XB is a paracompact space which is a discretiz-
able space of the metric space I. If XB is BCO, it is a developable
space, and then B is an Fσ-set in XB, a contradiction. Thus, XB

is not BCO.
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It is easy to check that Y has a point-countable base which is
uniform at non-isolated points. Hence, Y is an open boundary-
compact, s-image of a metric space by Corollary 3.2.

Example 4.2. Let ψ(D) be the Isbell-Mrówka space [22], here
|D| ≥ ℵ0. Then

(1) ψ(D) is an open, boundary-compact image of a metric space;
(2) ψ(D) is not a metalindelöf space;
(3) ψ(D) is a developable space if |D| = ℵ0;
(4) ψ(D) is not a perfect space if |D| ≥ c.

A collection C of subsets of an infinite set D is said to be almost
disjoint if A∩B is finite whenever A 6= B ∈ C. Let A be an almost
disjoint collection of countably infinite subsets of D and maximal
with respect to the properties. Then |A| ≥ |D|+ [15]. The Isbell-
Mrówka space ψ(D) is the set A ∪ D endowed with the following
topology: The points of D are isolated. Basic neighborhoods of a
point A ∈ A are the sets of the form {A} ∪ (A − F ) where F is a
finite subset of D.

Let X = ψ(D),A = {Aα}α∈Λ, and each Aα = {x(α, n) : n ∈ N}.
For each n ∈ N, put

Bn = {{Aα} ∪ {x(α,m) : m ≥ n} : α ∈ Λ} ∪ {{x} : x ∈ D}.
It is easy to see that {Bn} is a point-finite development for X.

Thus, X is the open, boundary-compact image of a metric space
by Theorem 3.1. Since an open cover {{Aα} ∪ D}α∈Λ of X has
no point-countable open refinement, X is not a metalindelöf space.
Thus, X is not an open s-image of a metric space, and X is not a
discretizable space of a space with a uniform base by Theorem 3.7.

If D is countable, it is obvious that ψ(D) is a developable space.
Hence, ψ(D) has a Gδ-diagonal, but ψ(D) has no point-countable
base because ψ(D) is not a metalindelöf space.

If |D| ≥ c, ψ(D) is not a developable space [9]; thus, ψ(D) is not
perfect by Corollary 3.5.

Example 4.3. There is a space X such that
(1) X has a sharp base;
(2) X does not have a uniform base at non-isolated points;
(3) X is an open compact and countable-to-one image of a space

with a uniform base.
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A space X having properties (1)–(3) is constructed in [2, Ex-
ample 5.1], where it is shown that X has a non-developable space
with a sharp base. Since X has no isolated point, it is not an open,
boundary-compact image of a metric space and does not have a uni-
form base at non-isolated points by Theorem 3.1. J. Chaber, in [10,
Example 4.5], proved that X is an open compact and countable-to-
one image of a space with a uniform base.

Example 4.4. There is a bi-quotient, at most boundary-one image
X of a metric space such that X is neither a pseudo-open s-image of
a metric space, nor an open, boundary-compact image of a metric
space.

Let X = R2 be endowed with the butterfly topology [19]. It is
easy to see that X is a first-countable, paracompact space without
any isolated point. Since X is a first-countable space, then X is
a bi-quotient, at most boundary-one image of a metric space by
Theorem 3.8. Since X does not have a point-countable base [18,
Example 1.8.3], X is not a countably bi-quotient s-image of a metric
space by Theorem 3.9. Because each pseudo-open map from a space
onto a first-countable space is countably bi-quotient [21], X is not a
pseudo-open s-image of a metric space. If X is an open, boundary-
compact image of a metric space, X is an open compact image of
a metric space, for X does not contain any isolated point. So X is
a developable space by Lemma 2.4. Thus, X is a metric space, a
contradiction.

Example 4.5. There is a proto-metrizable space without any uni-
form base at non-isolated points.

Gruenhage in [12, p. 363] constructed a proto-metrizable X
which is not a γ-space. Hence, X has no σ-Q base by [18, Propo-
sition 1.7.10], and it has no uniform base at non-isolated points by
Theorem 3.4.

Example 4.6. There is a space such that it is an open compact
image of a metric space, which is not any open, at most boundary-
one image of a metric space.

Yoshio Tanaka in [24, Example 3.1] constructed a non-regular
T2-space X which is an open, at most two-to-one image of a metric
space. Since X has no isolated point, it is not an open, at most
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boundary-one image of a metric space. Otherwise, X is an image
of a metric space under an open and bijective map, and then X is
homeomorphic to a metric space, a contradiction.

5. Questions

Some questions are posed in this final section.

Question 5.1. Let a space X have a point-countable base. If X
has a uniform base at non-isolated points, is X an open, boundary-
compact, s-image of a metric space?

Question 5.2. Is an open and boundary-compact s-image of a met-
ric space an open, boundary-compact and countable-to-one image
of a metric space?

Question 5.3. How could a discretizable space of a space with a
uniform base be characterized by a certain image of a metric space?
For example, is the open compact and at most boundary-one image
of a space with a uniform base a discretizable space of a space with
a uniform base?

Question 5.4. How could a space which is an open, at most
boundary-one, s-image of a metric space be characterized?
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